## Unit 8 - Week 7

## Course outline

How to access the portal?

Week-1

Week-2

Week 3

Week 4

Week 5
Week 6

Week 7

Classical Information Theory

Shannon Entropy

Shannon's
Noiseless
Coding
Theorem
Von Neumann
Entropy
EPR and Bell's Inequalities-I

EPR and Bell's Inequalities-II

EPR and Bell's Inequalities-III

Quiz : Week 7 Assignment 7

Week 7 -
Assignment 7 Solutions

## Week-8

## Week 7 - Assignment 7

The due date for submitting this assignment has passed. Due on 2017-09-13, 23:59 IS As per our records you have not submitted this assignment.

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X8=8 Marks)

1) $X$ is an unknown 8 bit binary number. You are given another 8 bit number $Y$ and old that the 1 point number $X$ differs from $Y$ in exactly one position. How many bits of information you have been given about $X$ ?
```
    1
log}2
    3
    5
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
5
2) In a population sample males and females are equally distributed. The literacy rate among 1 point males is $80 \%$ while that among females is $60 \%$. How many bits of information do you get on learning that a female is also literate?
0.61
1.22
1.74

No, the answer is incorrect.
Score: 0
Accepted Answers:
1.22
3) A source emits 3 symbols $A, B$, and $C$ in a statistically independent sequence with probability 1 point $0.5,0.25$ and 0.25 respectively. The entropy of the process is (in bits per symbol)
1
0.33
0.67

No, the answer is incorrect.
Score: 0
Accepted Answers:
1.5
4) A message is formed from 4 letters $A, B, C$ and $D$ with their respective probabilities being encoded is

- 175

50

- 25

No, the answer is incorrect.
Score: 0
Accepted Answers:
50
5) A card deck contains 52 playing cards. One of these is drawn at random. Given that the drawn card is a heart, the amount of uncertainty that the card drawn is a king of hearts is (in bits)

```
5.7
3.7
3
2
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
3.7
6) The von Neumann entropy (in bits) for the state described by the density matrix

$$
\left[\begin{array}{cccc}
\frac{1}{3} & 0 & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 \\
0 & 0 & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & 0 & \frac{1}{3}
\end{array}\right] \text { is given by: }
$$

No, the answer is incorrect.
Score: 0

## Accepted Answers:

$$
S=\log _{2} 2+\frac{1}{2} \log _{2} 3
$$

7) Entropy of the reduced density matrix provides a measure of entanglement of a state, more 1 point the entropy, more is the entanglement. Consider the following states:
1. $|\psi 1\rangle=0.8|00\rangle+0.6|11\rangle$
2. $|\psi 2\rangle=0.6|00\rangle+0.8|11\rangle$
3. $|\Psi 3\rangle=12(|00\rangle+|11\rangle)$

Which of the following statements is correct?

The state $|\psi 1\rangle$ is more entangled than $|\psi 2\rangle$
The state $|\Psi 2\rangle$ is more entangled than $|\Psi 1\rangle$

The entanglement measure of both $|\psi 1\rangle$ and $|\psi 2\rangle$ are the same and each of the states is more entangled than $|\Psi 3\rangle$

The entanglement measure of both $|\psi 1\rangle$ and $|\psi 2\rangle$ are the same and each of the states is less entangled than $|\Psi 3\rangle$

No, the answer is incorrect.
Score: 0

## Accepted Answers:

The entanglement measure of both $|\psi 1|$ and $|\psi 2\rangle$ are the same and each of the states is less ental than | $\psi 3$ )
8) In an experiment to verify Bell's inequality, Alice and Bob share a Bell state $|01\rangle+|10\rangle / \sqrt{ } 2$ with Alice having the first particle. Alice chooses two directions shown as and a ' in the figure while Bob chooses his directions to be b and b '. They measure their spins in these directions getting $\pm 1$.


If $\cos \phi=3 / 5$ and $\cos \theta=4 / 5$, then the expectation value $-E(a, b)+E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b\right)+E\left(a^{\prime}, b^{\prime}\right)$ is

$-2 \sqrt{2}$
$2 \sqrt{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
2.8

In the following questions, ONE or MORE answer(s) is(are correct). Choose all the appropriate ones. (2X4=8 Marks)
9) A discrete random variable $X$ takes values $\{0,1\}$ with probability of $X=1$ being $p$ and that of 2 points $X=0$ being 1-p. The Shannon entropy function has the following properties as a function of $p$
$\mathrm{H}(\mathrm{p})=0$ when $\mathrm{p}=0$ or $\mathrm{p}=1$
$\square \mathrm{H}(\mathrm{p})=\mathrm{H}(1-\mathrm{p})$ for every $\mathrm{p} \in\{0,1\}$It is a convex function of $p$
$\square \mathrm{H}(\mathrm{p})>0$ for all p
No, the answer is incorrect.
Score: 0
Accepted Answers:
$H(p)=0$ when $p=0$ or $p=1$
$H(p)=H(1-p)$ for every $p \in\{0,1\}$

10Which of the following statements is (are) true for von Neumann entropy $S(\rho)$ where $\rho$ is the $\mathbf{2}$ points density matrixIf $S(A)=S(B)$ for two states $A$ and $B$, the two states are identical$\operatorname{Tr}(\rho)=1$ implies $S(\rho)=0$
$\square S(\rho)=0$ implies $\operatorname{Tr}\left(\rho^{*} \rho\right)=1$$\operatorname{Tr}\left(\rho^{*} \rho\right)=1$ implies $S(\rho)=0$
No, the answer is incorrect.

## Score: 0

## Accepted Answers:

$S(\rho)=0$ implies $\operatorname{Tr}\left(\rho^{*} \rho\right)=1$
$\operatorname{Tr}\left(\rho^{*} \rho\right)=1$ implies $S(\rho)=0$
11) Consider a state in $H_{A} \times H_{B}$ where $H_{A}=H_{B}=C^{2}$. For a state given by
$\frac{1}{2}\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$, the von Neumann entropy satisfies the following.

$$
\begin{aligned}
& S \neq 0 \\
& S_{A}=0 \\
& S_{B}=0 \\
& S=0, \text { but } S_{A} \neq 0, S_{B} \neq 0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$S_{A}=0$
$S_{B}=0$
12According to Einstein, Podolsky and Rosen (EPR), quantum mechanics is an incomplete 2 points theory becauseit does not take account of reality.the theory can result in information transfer at a rate which violates special theory of relativitythere are hidden variables in the theoryresult of the theory is not deterministic before a measurement is made
No, the answer is incorrect.
Score: 0

## Accepted Answers:

it does not take account of reality.
the theory can result in information transfer at a rate which violates special theory of relativity result of the theory is not deterministic before a measurement is made

A project of
NPTEL
National Programme on Technology Enhanced Learning

In association with
NASSCOM
Funded by
Government of India Ministry of Human Resource Development

Powered by


