Unit 7 - Week 6

Course outline

How to access the portal ?

Week-1

Week-2

Week 3

Week 4

Week 5

Week 6
Quantum Error
Correction-I
Quantum Error
Correction-II Three
Qubit Code
Quantum Error Correction-III Shor's 9 Qubit Code-I

Quantum Error Correction-IV Shor's 9 Qubit
Code-II
Quiz : Week 6
Assignment 6
Week 6 -
Assignment 6
Solutions

Week 7

Week-8

Week 6 - Assignment 6

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2017-09-06, 23:59 IS

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X16=16 Marks)

1) In a classical communication, the sender transmits one of the following four codes: $\mathbf{1}$ point $C:=\{(000000),(101100),(010111),(111011)\}$. The probability of a single bit flip is $p=0.15$. If the receiver received (111111), what is most likely to have been the code sent?
(000000)
(101100)
(010111)
(111011)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(111011)
2) Given two vectors u and v representing two code words the Hamming distance

1 point between them is defined as the number of positions in which the two vectors differ. The minimum distance between the code words in the code $\mathrm{C}:=\{(00000)$,
(01110)(10011), (11111)\} is

1
2

- 3

5
No, the answer is incorrect.
Score: 0
Accepted Answers:
2
3) Assuming that the probability of bit flip is uniform across all bits, the maximum

1 point number of bit flips that the code C in the previous question can detect is

1
2
3
4
No, the answer is incorrect.
Score: 0
Accepted Answers:
1
4) Assuming that the probability of bit flip is uniform across all bits, the number of bit

1 point flips that the code C in question 2 can correct is

0
1

2
3
No, the answer is incorrect.
Score: 0
Accepted Answers:
0
5) Suppose in a classical error code, five bits are employed to encode a single bit. What is the success probability when the bit is sent through a noisy channel one by one with a probability that a bit is flipped with a probability $p=0.1$, assuming a majority vote principle is used?
0.95
0.97
0.99

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.99
6) In a quantum error correcting code, a qubit $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ is encoded as

○
$\frac{1}{\sqrt{8}}(|0\rangle+|1\rangle)^{\otimes 3}$
$\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$
$\frac{1}{\sqrt{8}}(|000\rangle+|111\rangle)^{\otimes 3}$
None of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$
7) If p is the probability of a bit flip in a classical 3 bit repetition code, under what circumstances, the code 1 point is less reliable than transmission in an uncoded manner?
$p>0.01$
$p>0.125$
$p>0.25$
$p>0.5$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$p>0.5$
8) In an error correcting model, an n-qubit code word is used for transmission. Assuming 1 point that only single bit flips are to be taken into account, what is the minimum word length n for which detection and recovery is possible?
9

No, the answer is incorrect.
Score: 0
Accepted Answers:
9) An arbitrary quantum state $a|0\rangle+b|1\rangle$ becomes, due to an error during transmission, the 1 point state $\mathrm{a}|1\rangle-\mathrm{b}|0\rangle$. The switch can be modeled by application of the following operator on the original state

$$
\begin{gathered}
\sigma_{x} \\
i \sigma_{y} \\
\sigma_{z} \\
i \sigma_{x} \sigma_{y}
\end{gathered}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$i \sigma_{y}$
${ }^{10)}$ Suppose a σ_{x} error affects the first qubit of an entangled state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. The error can be detecting by measurement of the following operator
$\sigma_{x} \otimes \sigma_{x}$
$\sigma_{x} \otimes \sigma_{z}$
$\sigma_{z} \otimes \sigma_{z}$
$\sigma_{z} \otimes \sigma_{x}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\sigma_{z} \otimes \sigma_{z}$
${ }^{11)}$ Suppose a σ_{z} error affects the first qubit of an entangled state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ The error ${ }^{1}$ point can be detecting by measurement of the following operator

$$
\begin{gathered}
\sigma_{x} \otimes \sigma_{x} \\
\sigma_{x} \otimes \sigma_{z} \\
\sigma_{z} \otimes \sigma_{z} \\
\sigma_{z} \otimes \sigma_{x}
\end{gathered}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\sigma_{x} \otimes \sigma_{x}$
12In a 3 qubit error code, the ancilla are measured to be in state $|10\rangle$, consequent to which 1 point σ_{x} is applied to the second qubit. In addition to recovering the original state $|\psi\rangle=\mathrm{a}|000\rangle+\mathrm{b}|111\rangle$, which of the following outcomes is also possible?

- $a|001\rangle+b|110\rangle$
- $a|100\rangle+b|011\rangle$
- a|100 $|+b| 111\rangle$
- $a|101\rangle+b|010\rangle$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$a|101\rangle+b \mid 010)$
13) In 3 qubit error code, if the ancilla states are measured to be $|11\rangle$, one can conclude thatA bit flip error has occurred in the first qubitA bit flip error either in the third qubit or in both second and third qubitsA bit flip error either in the third qubit or in both first and second and qubits
A bit flip error has occurred in the third qubit only
No, the answer is incorrect.

Score: 0

Accepted Answers:
A bit flip error has occurred in the first qubit
14)In the 3 qubit code, $|0\rangle$ was encoded as $|+++\rangle$ and $|1\rangle$ was coded as $|---\rangle$. Consider the following modification to the error detection circuit.

The ancilla are measured in computational basis. If the result of measurement is $|01\rangle$, it is indicative of a
phase flip in qubit 1
bit flip in qubit 3
phase flip in qubit 3
bit flip in qubit 1
No, the answer is incorrect.
Score: 0
Accepted Answers:
phase flip in qubit 3
15) In 3 qubit code the state $|+\rangle$ is encoded as $|\tilde{+}\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$. If an error
$\mathrm{E}=\mathrm{Z} \otimes \mathrm{I} \otimes \mathrm{I}$ occurs, then the syndrome extraction using ancilla states results in detection of
A phase error in qubit 1A phase error in qubit 2 and 3
A bit flip error in qubit 1
No error is detected
No, the answer is incorrect.
Score: 0
Accepted Answers:
No error is detected

The process depicted is

A bit flip and a phase flip with probability 0.25
A bit flip and a phase flip with probability 0.75
A phase flip with probability 0.75
A phase flip with probability 0.25
No, the answer is incorrect.
Score: 0
Accepted Answers:
A bit flip and a phase flip with probability 0.75

