Unit 6 - Week 5

Week 5 - Assignment 5

Course
 outline

How to access
the portal?

Week-1

Week-2

Week 3

Week 4

Week 5
Quantum
Fourier
Transform
Period Finding and QFT

Implementing
QFT
Implementing QFT-3 qubits (and more)

Shor's
Factorization
Algorithm
Shor's
Factorization
Algorithm-
Implementation
Shor's
Algorithm-
Continued
Fraction
Quiz: Week 5 -
Assignment 5
Week 5 -
Assignment 5
Solutions

Week 6

Week 7

Week-8

The due date for submitting this assignment has passed. Due on 2017-08-30, 23:59 IS As per our records you have not submitted this assignment.

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X9=9 Marks)

1) Consider a function over a set of two integers $\{0,1\}$. Let $f(0)=1$ and $f(1)=2$. If

1 point
\tilde{f}_{0} and \tilde{f}_{1} are the corresponding discrete Fourier transforms, then

$$
\tilde{f_{0}}=\frac{1}{\sqrt{2}}
$$

$\tilde{f_{0}}=-\frac{1}{\sqrt{2}}$
$\tilde{f_{0}}=\frac{3}{\sqrt{2}}$
$\tilde{f_{0}}=\frac{\sqrt{3}}{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\tilde{f_{0}}=\frac{3}{\sqrt{2}}$
${ }^{2)}$ Quantum Fourier Transform of $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is
$|1\rangle$

$$
\frac{|0\rangle+|1\rangle}{\sqrt{2}}
$$

$$
\frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
|1
3) Quantum Fourier Transform of the Bell state $\frac{|01\rangle+|10\rangle}{\sqrt{2}}$ is

$$
\begin{aligned}
& \frac{1}{2 \sqrt{2}}[2|00\rangle-(1-i)|01\rangle-(1+i)|11\rangle] \\
& \frac{1}{2 \sqrt{2}}[2|00\rangle-(1-i)|01\rangle+|10\rangle+(1+i)|11\rangle] \\
& \frac{1}{2 \sqrt{2}}[2|00\rangle-(1+i)|01\rangle-(1-i)|11\rangle] \\
& \frac{1}{2 \sqrt{2}}[|00\rangle-|01\rangle+|10\rangle-|11\rangle]
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{1}{2 \sqrt{2}}[2|00\rangle-(1-i)|01\rangle-(1+i)|11\rangle]
$$

4) If an operator S acting a state $|x\rangle$ gives the state $|x+1, \bmod N\rangle$, then S acting on its QFT, $|\tilde{x}\rangle$, gives

$$
\begin{aligned}
S|\tilde{x}\rangle & =|\tilde{x}+1, \bmod N\rangle \\
S|\tilde{x}\rangle & =|\tilde{x}-1, \bmod N\rangle \\
S|\tilde{x}\rangle & =\exp (-2 \pi i \tilde{x} / N)|\tilde{x}, \bmod N\rangle \\
S|\tilde{x}\rangle & =\exp (-2 \pi i \tilde{x} / N)|\tilde{x}+1, \bmod N\rangle
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$S|\tilde{x}\rangle=\exp (-2 \pi i \tilde{x} / N)|\tilde{x}, \bmod N\rangle$
5) The circuit shown below gives an output given by

No, the answer is incorrect.
Score: 0
Accepted Answers:
$-|11\rangle$
6) The order of $4 \bmod 35$ is

No, the answer is incorrect.
Score: 0
Accepted Answers:
6
7) The continued fraction representation of 3.1415 is
[3,7]
[3,7,7]
[3,7,14,1]
[3,7,14,1,8,2]
No, the answer is incorrect.
Score: 0
Accepted Answers:
[3,7,14, 1, 8, 2]
8) In factorizing $N=15$ to illustrate Shor's algorithm, a coprime integer $m=7$ is chosen to obtain its period. Choose a pair of I qubit registers such that $N^{2} \leq 2^{l} \leq 2 N^{2}$. Modular exponentiat ${ }^{+}+$ is done and the second register contains $f(x)$ corresponding to various values of x. A measurement of the second register now yields $f(x)=7$. We now apply QFT on the first register. A measurement of the first register gives the state $|128\rangle$. The probability of obtaining this outcome is

```
0.25
0.125
0.0625
0.0312
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.25
9) In factorizing $\mathrm{N}=21$ to illustrate Shor's algorithm, a coprime integer $\mathrm{m}=11$ is chosen to obtain its period. Choose a pair of qubit registers such that $N^{2} \leq 2^{l} \leq 2 N^{2}$. Modular exponentiation is done and the second register contains $f(x)$ corresponding to various values of x. A measurement of the second register now yields $f(x)=16$. How many states are there in the first register at this stage?

84
85
86

- 512

No, the answer is incorrect.
Score: 0

Accepted Answers:

85

In the following questions, ONE or MORE answer(s) is(are correct. Choose all the appropriate ones. (2X3=6 Marks)

10Which of the following is (are) properties satisfied by Discrete Integral Transform (DIT)?
2 points
\square The inverse transform always exists.
\square The kernel of the transform is unitary

If f is a function defined on a set of integers $S_{n}=\{0,1, \ldots \mathrm{~N}-1\}$, then the kernel K can be represented by an $\mathrm{N} \times \mathrm{N}$ matrix.

If the kernel K is unitary, then Parseval's theorem : $\sum_{x=0}^{N-1}|f(x)|^{2}=\sum_{y=0}^{N-1}|f(y)|^{2}$ holds
No, the answer is incorrect.
Score: 0

Accepted Answers:

If f is a function defined on a set of integers $S_{n}=\{0,1, \ldots N-1\}$, then the kernel K can be represented, an $N \times N$ matrix.
If the kernel K is unitary, then Parseval's theorem : $\sum_{x=0}^{N-1}|f(x)|^{2}=\sum_{y=0}^{N-1}|f(y)|^{2}$ holds
11Suppose in a period finding algorithm with n qubit registers, $\mathrm{f}(\mathrm{x})$ is a periodic function with a 2 points period P. Oracle is used to calculate $f(x)$ and store it in the output register. A QFT is applied on the first register. Then on measuring the first register, the possible values are
0N/2P
2N/2P
No, the answer is incorrect.
Score: 0
Accepted Answers:
0
2N/2P
12)n using Shor's algorithm to factorize $N=187$, which of the following numbers may be used 2 points to determine period of m^{a} ?
$\square 11$
No, the answer is incorrect.
Score: 0
Accepted Answers:
3
5
7

Funded by
Government of India
Ministry of Human Resource Development

