Course outline

How to access the portal?

Week-1

Week-2
Week 3

Week 4
Simple
Quantum
Algorithms-
Deutsch
Algorithm
Simple
Quantum
Algorithms:
Deutsch-Jozsa
and Bernstein-
Vazirani
Algorithms
Simple
Quantum
Algorithms-
Simon Problem
Grover's Search Algorithm-I

- Grover's Search Algorithm-II

Grover's Search Algorithm-III

Grover's Search Algorithm-IV

Quiz: Week 4 Assignment 4

Week 4 -
Assignment 4 Solutions

Week 4 - Assignment 4

The due date for submitting this assignment has passed. Due on 2017-08-23, 23:59 IST As per our records you have not submitted this assignment.

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X12=12 Marks)
${ }^{\text {1) }}$ In the Deutsch algorithm, the input to the oracle is $|x\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $|y\rangle=|1\rangle$, and
1 point the function is such that $f(0)=0, f(1)=1$. After being subjected to the oracle, the first qubit is passed through a Hadamard gate. The state of the qubits at this stage (before any measurement is made) is
$|01\rangle$
$|00\rangle+|01\rangle-|10\rangle+|11\rangle$
$|00\rangle+|01\rangle+|10\rangle+|11\rangle$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
|00\rangle+|01\rangle-|10\rangle+|11\rangle
$$

${ }^{2)}$ In the Deutsch algorithm, the input to the oracle is $x=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $y=|0\rangle$, and the
1 point function is such that $f(0)=0, f(1)=1$. After being subjected to the oracle, the first qubit is passed through a Hadamard gate. The state of the qubits at this stage (before any measurement is made) is

$$
\begin{gathered}
|00\rangle+|01\rangle \\
|01\rangle+|11\rangle \\
|10\rangle+|11\rangle \\
|00\rangle+|11\rangle
\end{gathered}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$|00\rangle+|11\rangle$
3) How many queries are required to determine whether a function

1 point $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is balanced or is constant in a deterministic classical

Week 7

Week-8

 algorithm?$$
\begin{aligned}
& n \\
& \frac{n}{2}-1 \\
& 2^{n-1}+1
\end{aligned}
$$

$$
2^{n-1}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
2^{n-1}+1
$$

4) The following circuit shows Deutsch-Jozsa algorithm:

Take $n=2$, i.e. a two qubit input in the first register. If $f(00)=1$ and $f(01)=f(10)=f(11)=0$, then the state $\left|\psi_{3}\right\rangle$ is

$$
\begin{gathered}
|00\rangle-|01\rangle+|10\rangle+|11\rangle \\
|00\rangle-|01\rangle-|10\rangle-|11\rangle \\
|00\rangle+|01\rangle-|10\rangle+|11\rangle \\
|00\rangle+|01\rangle+|10\rangle-|11\rangle
\end{gathered}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$$
|00\rangle-|01\rangle-|10\rangle-|11\rangle
$$

5) In Deutsch-Jozsa algorithm using a two qubit input, the oracle calculates a balanced function 1 point $f(00)=f(01)=0$ and $f(10)=f(11)=1$. After execution of the algorithm, the first register is measured. The output is:
|10〉
|01 \rangle
$|00\rangle$
|11 \rangle
No, the answer is incorrect.
Score: 0
Accepted Answers:
$|10\rangle$
6) A 2 to 1 function $f(x)$ is such that $f(x)=f(y)$ iff $x \oplus \xi=y$. If $f(100)=f(010)$ then it follows that

1 point$f(001)=f(111)$

$$
f(001)=f(101)
$$

$$
f(001)=f(000)
$$

$$
f(001)=f(110)
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$f(001)=f(111)$

Flips the sign of the component of $|\psi\rangle$ parallel to $|\mathrm{s}\rangle$
Flips the sign of the component of $|\psi\rangle$ perpendicular to $|\mathrm{s}\rangle$
Flips the sign of the component of $|\psi\rangle$ parallel to the marked state $|\mathrm{w}\rangle$
Flips the sign of $|\psi\rangle$
No, the answer is incorrect.

Score: 0

Accepted Answers:
Flips the sign of the component of $|\psi\rangle$ perpendicular to $|s\rangle$
8) How many iterations are required by Grover's algorithm to find one marked item out of 100 in $\mathbf{1 p c}$ an unstructured database?
10
9
8
7

No, the answer is incorrect.
Score: 0
Accepted Answers:
8
9) Consider Grover algorithm for $\mathrm{N}=16$ out of which one item is to be searched. The probability 1 point of success after two iterations of the algorithm is0.0670.4810.958
0.997

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.481

10For Deutsch-Jozsa algorithm with 2 qubit inputs how many functions are 1 point constant functions?

1
2
6
8
No, the answer is incorrect.
Score: 0

Accepted Answers:

2
11.Supposing you write a program for classical deterministic algorithm for Deutsch-Jozsa

1 point problem to determine whether a given function is constant or is balanced. What is the minimum number of function evaluation after which such a program may terminate?

```
    2
    3
    n/2
2n-1
```

No, the answer is incorrect.
Score: 0
Accepted Answers:

12In Bernstein- Vazirani problem with n qubit inputs $x \in\{0,1\}^{n}$ and a 1 point classical program which calculates $f(x)=a \cdot x$, where $a \cdot x=a_{n-1} x_{n-1}+a_{n-2} x_{n-2}+\ldots+a_{0} x_{0}(\bmod 2)$, how many queries do we need to determine the unknown string?

```
n
n
2n-1}+
2n
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
n

In the following questions, ONE or MORE answer(s) is(are correct. Choose all the appropriate ones. (2X4=8 Marks)
13)f, in the Deutsch algorithm, the input to the oracle is $|x\rangle=(|0\rangle+|1\rangle) / \sqrt{ } 2$ and $|y\rangle=|0\rangle$, then
\square If the function is constant, we would get $|0\rangle$ on measuring the first qubit
\square If the function is constant, we would get $|1\rangle$ on measuring the first qubit
\square If the function is balanced, on measuring the first qubit, we would get $|0\rangle 50 \%$ of time and |1 \rangle
50% of time
\square If on measuring the first qubit, we get |1才, the function must be balanced
No, the answer is incorrect.
Score: 0

Accepted Answers:

If the function is constant, we would get $|0\rangle$ on measuring the first qubit
If the function is balanced, on measuring the first qubit, we would get |0| 50% of time and |1| 50% of time If on measuring the first qubit, we get |1|, the function must be balanced
14) n Deutsch-Jozsa algorithm taking $x=2^{n-1} x_{n-1}+2^{n-2} x_{n-2}+\cdots+2^{0} x_{0}$, which of 2 points the following are examples of a constant function?
$\left[\frac{x}{2^{n}}\right]$, where [] represents the greatest integer function

```
sin(\pix)
\operatorname{cos}(\pix)
|
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left[\frac{x}{2^{n}}\right]$, where [] represents the greatest integer function
$\sin (\pi x)$
$|\cos (\pi x)|$
15Grover's rotation R_{G} operator is
2 points
\square Unitary
\square Hermitian
\square Orthogonal
\square Symmetric

No, the answer is incorrect.
Score: 0
Accepted Answers:
Unitary
Orthogonal
16For a database of 16 items, if a measurement of the state is made after ' n ' iterations of 2 points Grover's algorithm, find the probability ' p ', that it will fail to identify the marked state corresponding to ' n '$\mathrm{n}=1, \mathrm{p}=375 / 256$
$\mathrm{n}=2, \mathrm{p}=375 / 4096$
$\square \mathrm{n}=2, \mathrm{p}=735 / 4096$
$\square \mathrm{n}=1, \mathrm{p}=135 / 256$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$n=2, p=375 / 4096$
$n=1, p=135 / 256$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

A project of
NPTEL
National Programme on Technology Enhanced Learning

Funded by
Government of India
Ministry of Human Resource Development

Powered by

