Х

Week 7

algorithm? n $\frac{n}{2} - 1$ $2^{n-1} + 1$ 2^{n-1}

> No, the answer is incorrect. Score: 0

Accepted Answers: $2^{n-1} + 1$

4) The following circuit shows Deutsch-Jozsa algorithm:

Take n=2, i.e. a two qubit input in the first register. If f(00)=1 and f(01)=f(10)=f(11)=0, then the state $|\psi_3\rangle$ is

f 1 pcm ate Q+

 $|00\rangle - |01\rangle + |10\rangle + |11\rangle$ $|00\rangle - |01\rangle - |10\rangle - |11\rangle$ $|00\rangle + |01\rangle - |10\rangle + |11\rangle$ $|00\rangle + |01\rangle + |10\rangle - |11\rangle$ No, the answer is incorrect.

No, the answer is incorrect. Score: 0

Accepted Answers: $|00\rangle - |01\rangle - |10\rangle - |11\rangle$

5) In Deutsch-Jozsa algorithm using a two qubit input, the oracle calculates a balanced function **1** point f(00)=f(01)=0 and f(10)=f(11)=1. After execution of the algorithm, the first register is measured. The output is:

|10> |01> |00> |11>

No, the answer is incorrect. Score: 0 Accepted Answers:

 $|10\rangle$

6) A 2 to 1 function f(x) is such that f(x) = f(y) iff $x \oplus \xi = y$. If f(100) = f(010) then it follows that **1 point**

f(001) = f(111) f(001) = f(101) f(001) = f(000) f(001) = f(110)

No, the answer is incorrect. Score: 0 Accepted Answers: f(001) = f(111)

Quantum Information and Computing - - Unit 5 - Week 4

Qualitant information and computing offices week +	
7) Grover's operator $2 s angle\langle s -I$, acting on an arbitrary state $ \psi angle$	1
\bigcirc Flips the sign of the component of $ \psi\rangle$ parallel to $ s\rangle$	
\bigcirc Flips the sign of the component of $ \psi\rangle$ perpendicular to $ s\rangle$	
\bigcirc Flips the sign of the component of $ \psi\rangle$ parallel to the marked state $ w\rangle$	
• Flips the sign of $ \psi\rangle$	

No, the answer is incorrect. Score: 0

Accepted Answers: Flips the sign of the component of $|\psi\rangle$ perpendicular to $|s\rangle$

Flips the sign of the component of |\u03c6\u03c6 perpendicular to |s\u03c6
8) How many iterations are required by Grover's algorithm to find one marked item out of 100 in 1 perpendicular to |s\u03c6
10
10
9
8 an unstructured database?

8 7 No, the answer is incorrect. Score: 0

Accepted Answers: 8

9) Consider Grover algorithm for N=16 out of which one item is to be searched. The probability 1 point of success after two iterations of the algorithm is

0.067 0.481 0.958 0.997

No, the answer is incorrect. Score: 0

Accepted Answers: 0.481

10For Deutsch-Jozsa algorithm with 2 gubit inputs how many functions are 1 point constant functions?

1 2 6 8 No, the answer is incorrect. Score: 0

Accepted Answers: 2

11)Supposing you write a program for classical deterministic algorithm for Deutsch-Jozsa 1 point problem to determine whether a given function is constant or is balanced. What is the minimum number of function evaluation after which such a program may terminate?

Accepted Answers:				
No, the answer is incorrect. Score: 0				
n/2				
3				
2				

point

¹²In Bernstein- Vazirani problem with n qubit inputs $x \in \{0, 1\}^n$ and a **1** point classical program which calculates $f(x) = a \cdot x$, where

 $a \cdot x = a_{n-1}x_{n-1} + a_{n-2}x_{n-2} + \ldots + a_0x_0 \pmod{2}$, how many queries do we need to determine the unknown string?

In the following questions, ONE or MORE answer(s) is(are correct. Choose all the appropriate ones. (2X4=8 Marks)

13) f, in the Deutsch algorithm, the input to the oracle is $|x\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ and $|y\rangle = |0\rangle$, then **2** points

- If the function is constant, we would get |0) on measuring the first qubit
- If the function is constant, we would get |1> on measuring the first qubit

If the function is balanced, on measuring the first qubit, we would get $|0\rangle$ 50% of time and $|1\rangle$ 50% of time

If on measuring the first qubit, we get |1⟩, the function must be balanced

No, the answer is incorrect. Score: 0

Accepted Answers:

If the function is constant, we would get |0) on measuring the first qubit If the function is balanced, on measuring the first qubit, we would get |0) 50% of time and |1) 50% of time If on measuring the first qubit, we get |1), the function must be balanced

¹⁴)n Deutsch-Jozsa algorithm taking $x = 2^{n-1}x_{n-1} + 2^{n-2}x_{n-2} + \cdots + 2^{0}x_{0}$, which of **2** points the following are examples of a constant function?

|cos(πx)|

No, the answer is incorrect. Score: 0

Accepted Answers:

 $\left[\frac{x}{2^{n}}\right]$, where [] represents the greatest integer function $sin(\pi x)$ $|cos(\pi x)|$

15)Grover's rotation R_G operator is

- Unitary
- Hermitian
- Orthogonal
- Symmetric

4/5

2 points

26/07/2020

Quantum Information and Computing - - Unit 5 - Week 4

No, the answer is incorrect. Score: 0	
Accepted Answers: Unitary Orthogonal	
16For a database of 16 items, if a measurement of the state is made after 'n' iterations o Grover's algorithm, find the probability 'p', that it will fail to identify the marked state corres	f 2 points ponding to 'n'
 n=1, p=375/256 n=2, p=375/4096 n=2, p=735/4096 n=1, p=135/256 	f Y
No, the answer is incorrect. Score: 0 Accepted Answers: n=2, p=375/4096 n=1, p=135/256	► in 8+
Previous Page	End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

