Unit 4 - Week 3

Course
 outline

How to access the portal?

Week-1

Week-2

Week 3

Density Matrix-I
Density Matrix-II
Bloch Sphere and Density Matrix

Measurement Postulates-I

Measurement
Postulates-II
Quiz: Week 3
Assignment 3
Week 3 -
Assignment 3 Solutions

Week 4

Week 5

Week 6

Week 7

Week-8

Week 3 - Assignment 3

The due date for submitting this assignment has passed. Due on 2017-08-16, 23:59 IS As per our records you have not submitted this assignment.

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X12=12 Marks)
${ }^{\text {1) }}$ A system is in the state $\frac{1}{\sqrt{3}}\left|u_{1}\right\rangle+i \sqrt{\frac{2}{3}}\left|u_{2}\right\rangle$, where $\left|u_{1}\right\rangle$ and $\left|u_{2}\right\rangle$ constitute
1 point an orthonormal basis. The density matrix ρ of the system is

$$
\begin{aligned}
& \frac{1}{3}\left|u_{1}\right\rangle\left\langle u_{1}\right|+\frac{2}{3}\left|u_{2}\right\rangle\left\langle u_{2}\right| \\
& \frac{1}{3}\left|u_{1}\right\rangle\left\langle u_{1}\right|-\frac{i \sqrt{2}}{3}\left|u_{2}\right\rangle\left\langle u_{1}\right|+\frac{i \sqrt{2}}{3}\left|u_{1}\right\rangle\left\langle u_{2}\right|+\frac{2}{3}\left|u_{2}\right\rangle\left\langle u_{2}\right| \\
& \frac{1}{3}\left|u_{1}\right\rangle\left\langle u_{1}\right|+\frac{i \sqrt{2}}{3}\left|u_{2}\right\rangle\left\langle u_{1}\right|-\frac{i \sqrt{2}}{3}\left|u_{1}\right\rangle\left\langle u_{2}\right|+\frac{2}{3}\left|u_{2}\right\rangle\left\langle u_{2}\right| \\
& \frac{1}{3}\left|u_{1}\right\rangle\left\langle u_{1}\right|-\frac{2}{3}\left|u_{2}\right\rangle\left\langle u_{2}\right|
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{3}\left|u_{1}\right\rangle\left\langle u_{1}\right|+\frac{i \sqrt{2}}{3}\left|u_{2}\right\rangle\left\langle u_{1}\right|-\frac{i \sqrt{2}}{3}\left|u_{1}\right\rangle\left\langle u_{2}\right|+\frac{2}{3}\left|u_{2}\right\rangle\left\langle u_{2}\right|$
2) The trace of ρ^{2} for the density matrix given in Q1 is

No, the answer is incorrect.
Score: 0
Accepted Answers:
1
${ }^{3)}$ A system is in the state $\frac{1}{2}\left|u_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|u_{2}\right\rangle+\frac{1}{2}\left|u_{3}\right\rangle$ The matrix representation of 1 point the density matrix is

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\
\frac{1}{2 \sqrt{2}} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2 \sqrt{2}} & \frac{1}{4} & \frac{1}{4}
\end{array}\right) \\
& \left(\begin{array}{ccc}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right) \\
& \left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{2 \sqrt{2}} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2 \sqrt{2}} & \frac{1}{4} & \frac{1}{4}
\end{array}\right) \\
& \left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2 \sqrt{2}} & \frac{1}{4} \\
\frac{1}{2 \sqrt{2}} & \frac{1}{2} & \frac{1}{2 \sqrt{2}} \\
\frac{1}{4} & \frac{1}{2 \sqrt{2}} & \frac{1}{4}
\end{array}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2 \sqrt{2}} & \frac{1}{4} \\
\frac{1}{2 \sqrt{2}} & \frac{1}{2} & \frac{1}{2 \sqrt{2}} \\
\frac{1}{4} & \frac{1}{2 \sqrt{2}} & \frac{1}{4}
\end{array}\right)
$$

4) The density operator ρ evolves with time following the equation

$$
\begin{aligned}
& -i \hbar \frac{d \rho}{d t}=[H, \rho] \\
& i \hbar \frac{d \rho}{d t}=[H, \rho] \\
& i \hbar \frac{d \rho}{d t}=H \rho \\
& -i \hbar \frac{d \rho}{d t}=H \rho
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$i \hbar \frac{d \rho}{d t}=[H, \rho]$
5) The reduced density matrix for the two qubit entangled state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$, corresponding to either of the qubits is
$\frac{I}{\sqrt{2}}$
$\frac{I}{2}$
$\frac{3 I}{4}$
\bigcirc
I
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{I}{2}$
${ }^{6)}$ A two qubit state is given by $\frac{1}{\sqrt{3}}[|00\rangle+|01\rangle+|10\rangle]$. The reduced density matrix of the first qubit is

$$
\begin{aligned}
& \frac{1}{3}[|0\rangle\langle 0|+|1\rangle\langle 0|+|0\rangle\langle 1|+2|1\rangle\langle 1|] \\
& \frac{1}{2}[|0\rangle\langle 0|+|1\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 1|] \\
& \frac{1}{3}[2|0\rangle\langle 0|+|1\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 1|] \\
& \frac{1}{3}[2|0\rangle\langle 0|-|1\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 1|]
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{3}[2|0\rangle\langle 0|+|1\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 1|]$
7) The centre of the Bloch sphere is

A pure state
Neither a pure state nor a mixed state
A mixed state represented by a matrix whose diagonal elements are $1 / 2$ each and the off diagonal elements are 1 each
A mixed state represented by a diagonal matrix whose elements are $1 / 2$ each
No, the answer is incorrect.
Score: 0
Accepted Answers:
A mixed state represented by a diagonal matrix whose elements are 1/2 each
${ }^{8)}$ The matrix $\left(\begin{array}{cc}1 / 3 & \sqrt{3} i / 2 \\ -\sqrt{3} i / 2 & 2 / 3\end{array}\right)$
is a valid density matrix for a system and it represents a pure state
is a valid density matrix for a system and it represents a mixed state
is not a valid density matrix since it is not hermitian
is not a valid density matrix as it is not a positive matrix
No, the answer is incorrect.

Score: 0

Accepted Answers:
is not a valid density matrix as it is not a positive matrix
9) The reduced density matrix corresponding to the first qubit for the state $\frac{\sqrt{3}}{2}|00\rangle+\frac{1}{2}|11\rangle$ is given by

$$
\begin{aligned}
& \frac{1}{4}\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right) \\
& \frac{1}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& \frac{1}{\sqrt{3}+1}\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right) \\
& \frac{1}{\sqrt{3}+1}\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{3}
\end{array}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{1}{4}\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$
${ }^{10}$ Consider a two qubit state $\frac{1}{\sqrt{7}}(|00\rangle+\sqrt{2}|01\rangle+\sqrt{3}|10\rangle+|11\rangle)$ If we measure ${ }^{1}$ point the first qubit and obtain $|0\rangle$, then the second qubit collapses to

$$
\begin{aligned}
& \frac{1}{\sqrt{3}}(|0\rangle+\sqrt{2}|1\rangle) \\
& \frac{1}{\sqrt{3}}(\sqrt{2}|0\rangle+|1\rangle) \\
& \frac{1}{\sqrt{7}}(|0\rangle+\sqrt{2}|1\rangle) \\
& \frac{1}{\sqrt{7}}(2|0\rangle+\sqrt{3}|1\rangle)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{1}{\sqrt{3}}(|0\rangle+\sqrt{2}|1\rangle)$
11 In Q 10, the probability that a projective measurement of the first qubit gives is $\mathbf{1}$ point $|0\rangle$

5/7
-4/7

2/7

No, the answer is incorrect.
Score: 0
Accepted Answers:
3/7
${ }^{12}$ Consider a two qubit state $\frac{1}{\sqrt{1} 1}(|00\rangle+\sqrt{5}|01\rangle+\sqrt{2}|10\rangle+\sqrt{3}|11\rangle)$. The probability of measuring $|0\rangle$ for the first qubit is

$$
\begin{aligned}
& \frac{1+\sqrt{5}}{\sqrt{11}} \\
& 6 / 11 \\
& 0 \\
& \frac{(1+\sqrt{5})^{2}}{11}
\end{aligned}
$$

5/11
No, the answer is incorrect.
Score: 0
Accepted Answers:
6/11

In the following questions, ONE or MORE answer(s) is(are correct. Choose all the appropriate ones. (2X4=8 Marks)

13Which of the following properties must be satisfied for the density matrix corresponding to a mixed state?

Its eigenvalues must be non-negative
The distance of the state from the origin of the Bloch sphere should be less than 1

```
Trace ( }\mp@subsup{\rho}{}{2}\mathrm{ ) < Trace ( }\rho\mathrm{ )
\square \text { It satisfies Liouville equation}
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
Its eigenvalues must be non-negative
The distance of the state from the origin of the Bloch sphere should be less than 1
${ }^{14)}$ Consider a two qubit state $\frac{1}{\sqrt{2}}[|00\rangle+|01\rangle]$. Which of the following 2 points matrices are members of the set corresponding to the measurement operators for the second qubit?
i) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
ii) $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
iii) $\begin{aligned} & \left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \\ & \left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\end{aligned}$
(i) and (ii)
(i) and (iii)
\square (ii) and (iii)
\square (iii) and (iv)
No, the answer is incorrect.
Score: 0
Accepted Answers:
(iii) and (iv)

15Let ρ be a density matrix given by $\rho=p|0\rangle\langle 0|+q|1\rangle\langle 1|$. It follows that

$$
\begin{aligned}
& p+q=1 \\
& p^{2}+q^{2}=1 \\
& p^{2}+q^{2}<1 \\
& \operatorname{Trace}\left(\rho^{2}\right)=p^{2}+q^{2}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
p^{2}+q^{2}<1
$$

16) A system is a statistical mixture of states in which 25% are in state $|0\rangle$ and the 2 points remaining in state $|1\rangle$. If the measurement is made in $\{|+\rangle,|-\rangle\}$ basis, then the probability of finding the system in state $|+\rangle$ is
1

- $1 / 2$
$\square 1 / 4$

No, the answer is incorrect.
Score: 0
Accepted Answers:
1/2
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

A project of
NPTEL
National Programme on Technology Enhanced Learning

In association with
NASSCOM ${ }^{\circ}$

Government of India Ministry of Human Resource Development

Powered by

