Unit 2 - Week-1

Course outline

How to access the portal?

Week-1

Why Quantum Computing?

Postulates of Quantum Mechanics

Postulates of Quantum Mechanics II

Qubit- The smallest unit

Qubit- Bloch sphere representation

Quiz: Week 1
Assignment 1
Assigment 1:
Answer Key
Week 1
Assignment -
Worked out
Solutions
Week-2

Week 3

Week 4

Week 5

Week 6

Week 7

Week-8

Week 1 - Assignment 1

The due date for submitting this assignment has passed. Due on 2017-08-07, 23:59 IS As per our records you have not submitted this assignment.

In the following questions, ONLY ONE answer is correct. Choose the most appropriate one. (1X10=10 Marks)

1) Operators in quantum mechanics act on vectors in an abstract1 point space called

Euclidean space

- Riemann space
- Hilbert space
- Normed space

No, the answer is incorrect.
Score: 0
Accepted Answers:
Hilbert space
2) Which of the following properties is NOT true of the abstract space in which quantum 1 point mechanics is formulated?

It has a norm.
The space is complete.
The space is a linear vector space.
The operators corresponding to physical observables are represented by rays in this space.
No, the answer is incorrect.
Score: 0
Accepted Answers:
The operators corresponding to physical observables are represented by rays in this space.
3) Observables in quantum mechanics are represented by 1 point Hermitian operators because

They are linear.
They have real eigenvalues
Acting on a vector of the Hilbert space, they give another vector in the same space.
They may be represented by Hermitian matrices.
No, the answer is incorrect.
Score: 0
Accepted Answers:
They have real eigenvalues.

The adjoint of an operator represented by the matrix $\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$ is

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& 0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\begin{array}{cc}1 & i \\ -i & 1\end{array}\right)$
5) If u and v are two vectors in the Hilbert space and λ is a complex 1 point number, then,

```
|u+v||}|{u|+|v
\langleu,v\rangle=\langlev,u\rangle
\bigcirc
\langle\lambdau,v\rangle=\lambda\langleu,v\rangle
\langleu,u\rangle>0
```

No, the answer is incorrect.
Score: 0

Accepted Answers:

$|u+v| \leq|u|+|v|$
6) Where does the eigenvector of the Pauli operator σ_{y} corresponding to the eigenvalue -1 lie on the Bloch sphere?

$$
\begin{aligned}
& \theta=\frac{\pi}{2}, \varphi=0 \\
& \theta=\frac{\pi}{2}, \varphi=\frac{\pi}{2} \\
& \theta=\frac{\pi}{2}, \varphi=\pi \\
& \theta=\frac{\pi}{2}, \varphi=\frac{3 \pi}{2}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
${ }^{7)}$ Which of the following is a spectral representation of the matrix $\left(\begin{array}{cc}-0.8 & 0.6 \\ 0.6 & 0.8\end{array}\right)$?

$$
\begin{aligned}
& \left(\begin{array}{cc}
-0.4 & 0.3 \\
0.3 & 0.4
\end{array}\right)-\left(\begin{array}{cc}
0.4 & -0.3 \\
-0.3 & -0.4
\end{array}\right) \\
& \left(\begin{array}{cc}
0.1 & 0.3 \\
0.3 & 0.9
\end{array}\right)-\left(\begin{array}{cc}
0.9 & -0.3 \\
-0.3 & 0.1
\end{array}\right) \\
& \left(\begin{array}{cc}
0.1 & -0.3 \\
-0.3 & 0.9
\end{array}\right)-\left(\begin{array}{cc}
0.9 & -0.9 \\
-0.9 & 0.1
\end{array}\right) \\
& \left(\begin{array}{cc}
-0.1 & -0.3 \\
-0.3 & 0.9
\end{array}\right)-\left(\begin{array}{cc}
-0.9 & -0.9 \\
0.9 & -0.1
\end{array}\right)
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left(\begin{array}{ll}
0.1 & 0.3 \\
0.3 & 0.9
\end{array}\right)-\left(\begin{array}{cc}
0.9 & -0.3 \\
-0.3 & 0.1
\end{array}\right)
$$

8) Which of the following is NOT a hermitian operator?

$$
\begin{aligned}
& x \\
& -i \frac{\partial}{\partial x} \\
& \frac{p^{2}}{2 m} \\
& x^{2}+i x^{3}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$x^{2}+i x^{3}$
9) According to Copenhagen interpretation of quantum mechanics 1 point

A physical system does not have definite property independent of observation
The value of a physical variable at a given time is definite but such value is revealed only at the time of measurement.
The wave function collapse occurs when the laws of quantum mechanics do not remain valid.
A quantum particle only has a discrete energy state.
No, the answer is incorrect.
Score: 0
Accepted Answers:
A physical system does not have definite property independent of observation
10)Which of the following matrices is NOT hermitian?

$$
\begin{gathered}
2 \\
\left(\begin{array}{ccc}
2+i & 2-i \\
1-i & 1 & i \\
2+i & -i & 1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 1-i & 2 \\
1+i & 3 & i
\end{array}\right)
\end{gathered}
$$

Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX/fontdata.js

$$
\begin{gathered}
i \\
\left(\begin{array}{ccc}
-1-i & 3 i & i \\
-2 & i & 0
\end{array}\right) \\
\left(\begin{array}{ccc}
3 & 2-i & -3 i \\
2+i & 0 & 1-i \\
3 i & 1+i & 0
\end{array}\right)
\end{gathered}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left(\begin{array}{ccc}
i & 1-i & 2 \\
-1-i & 3 i & i \\
-2 & i & 0
\end{array}\right)
$$

In the following questions, ONE or MORE answer(s) is(are correct. Choose all the appropriate ones. (2X5=10 Marks)

11Landauer's principle givesA theoretical lower limit of the energy consumption in irreversible computation.A theoretical upper limit of the energy consumption in irreversible computation.Increase in entropy of the environment in an irreversible computation.Decrease in entropy of the environment in an irreversible computation.

No, the answer is incorrect.
Score: 0
Accepted Answers:
A theoretical lower limit of the energy consumption in irreversible computation. Increase in entropy of the environment in an irreversible computation.

12An acceptable wave function in quantum mechanics iscontinuous everywheresingle valuednormalizablereal valued
No, the answer is incorrect.
Score: 0
Accepted Answers:
continuous everywhere
single valued
normalizable
1.13) Which of the following set of vectors is (are) acceptable basis in C^{3} ?
$\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$
$\left(\begin{array}{c}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$

123
$\binom{1}{2},\binom{2}{5},\binom{3}{7}$
$\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\begin{array}{ccc}
1 & 0 & 1 \\
\binom{0}{1}, & \binom{1}{1}, & \binom{2}{-1} \\
\binom{1}{0}, & \binom{1}{1}, & \binom{1}{1}
\end{array}
$$

14Which of the following statements on unitary matrices is true?

A square matrix U is unitary if $U U^{*}=I$.

If U is unitary U^{-1} also is unitary.
\square Product of two unitary matrices is unitary.
Eigenvalues of U are ± 1
No, the answer is incorrect.
Score: 0
Accepted Answers:
If U is unitary U^{-1} also is unitary.
Product of two unitary matrices is unitary.
${ }^{15}$ Which of the following is an operator projecting a spin $\frac{1}{2}$ state ${ }^{2}$ points along the eigenstate of σ_{z} corresponding to eigenvalue +1 ?

$$
\begin{aligned}
& \frac{\left(1+\sigma_{z}\right)^{2}}{2} \\
& \square \\
& \frac{\left(1-\sigma_{z}\right)^{2}}{2} \\
& \square \\
& \frac{\left(1+\sigma_{z}\right)^{2}}{4} \\
& \square \\
& \frac{\left(1-\sigma_{z}\right)^{2}}{4}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{\left(1+\sigma_{z}\right)^{2}}{4}$
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

A project of

In association with
unded by
Government of India Ministry of Human Resource Development

Powered by

