1 point

Announcements

Unit 3 - Week 2

Course outline	Assignment 2
How does an NPTEL online course work?	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.
Week 1	
Week 2	The material removal from contacting surfaces involves:
Wear mechanisms: Adhesive	Inear relative motion motion due to impact
wear mechanisms. Aunesive	motion due to impact motion due to application of torque to the loading system
Wear mechanisms: Abrasive wear	O all of the above No, the answer is incorrect.
Wear mechanisms: Tribochemical wear and Oxidative wear	Score: 0 Accepted Answers: all of the above
Wear mechanisms: Fatigue wear and Fretting wear	Choose appropriate example from the following where wear is not desirable
Wear mechanisms: Erosive wear	writing with pencil machining
Quiz : Assignment 2	shaving
Solution For Assignment 2	O bearings No, the answer is incorrect.
/eek 3	Score: 0
	Accepted Answers: bearings
eek 4	Choose conformal contact from the following
eek 5	
eek 6	Iflat bottom pin on flat Iflat bottom block on ring
	ball on disc
ek 7	oround bottom pin on flat
ek 8	No, the answer is incorrect. Score: 0
t Transcripts	Accepted Answers: flat bottom pin on flat
WNLOAD VIDEOS	4) Under 10N normal load, a cylindrical bronze pin of radius 1 mm rests on a steel disk at a mean radius of 25 mm. When the disk rotates at 300 rpm for 10
EEKLY FEEDBACK	hours, mass losses of the disk and pin are found to be 4 mg and 50 mg, respectively. The densities of bronze and steel are 9 g/cc and 8 g/cc, respectively. The hardness values for bronze and steel are 0.8 GPa and 2.5 GPa, respectively. The wear coefficient of steel disk (up to 1 decimal) is (X 10^-6).
	No, the answer is incorrect.
	Score: 0
	Accepted Answers: (Type: Range) 4.0,5.0
	2 point
	5) As per the indentation fracture mechanics, the minimum load required for a ceramic material in a point contact is 1 N. If the fracture toughness is increased by 1.5 times and the hardness decreased by 0.8 times, the minimum load (in N) required for fracture in the same contact (up to 1 decimal) is
	No, the answer is incorrect.
	Score: 0 Accepted Answers:
	(Type: Range) 9.5,10.0
	0 point
	Choose correct combination for a abrasive wear condition i. ductile material I. chipped out wear particle
	ii. brittle material II. ribbon like wear particle
	○ i-l, ii-ll
	○ i-II, ii-I
	○ i-l, ii-l
	O i-II, ii-II No, the answer is incorrect
	No, the answer is incorrect. Score: 0
	Accepted Answers: i-II, ii-I
	7) Choose the correct combination(s) for superior erosive wear resistant material.
	i. tough and extremely hard

ii. tough and low elastic modules iii. extremely tough and less hard iv. low elastic modulus and low hard

No, the answer is incorrect. Score: 0

8) Adhesion contribution to friction will be:

larger for dissimilar material couple

independent of material combination

larger for self-mated couple

smaller for self-mated couple

No, the answer is incorrect. Score: 0

larger for self-mated couple

Accepted Answers:

Accepted Answers:

i and ii

 \bigcirc i

○ii

○ iii

○iv

i and ii