urses » Iron Making	Announcements	Course	Ask a Question	Progress	Mentor
nit 5 - Iron Ma	aking - Week 3				
Course A	ssignment 3				
How to access the portal Su	e due date for submitting this a Ibmitted assignment	ssignment ha	as passed. Due on 2	2018-02-28,	23:59 IS1
ron Making 1) Neek 1 The	difference between direct and ind	irect reduction	of iron oxide is:		1 po
DOWNLOAD VIDEOS	Direct reduction uses C and iDirect reduction occurs at hig	ndirect reduct Jh temperature	ion can use CO or H ₂ c and indirect reduction	or both occurs in a ran	ge of
ron Making Neek 2	Direct reduction uses CO or H	H ₂ or both and	l indirect reduction use	s C	
ron Making - N Neek 3 S	o, the answer is incorrect.				
Iron Making A Lecture 11 D	ccepted Answers: irect reduction uses C and indirec	t reduction ca	n use CO or H ₂ or both		
Iron Making Lecture 12 2) Con:	sider the reduction of iron oxide (h	nematite) to fo	rm iron in a blast furnad	ce. Calculate th	1 po e approxima
Iron Making Lecture 13 equi	librium constant for the reduction librium having $\Delta G = -110.5 \text{ k}$.	of hematite to	magnetite by CO at 90	10 ⁰ C given that i	t attains
Iron Making Lecture 14	 1.01 				
 Iron Making Lecture 15 	830003.5				
Quiz : Assignment 3	 88000 o, the answer is incorrect. 				
 iron-making- week3- assignment3- solution K S 	core: 0 ccepted Answers: 3000				
ron Making - 3) Neek 4 Calc	ulate the required ratio of CO/CO	₂ in the reduct	ion of magnetite to wus	stite by CO at 90	1 po 00 ⁰ C given t
ron Making - equi Neek 5	ibrium constant K=5				
ron Making Neek 6	0.40.6				

Interactive Session with Students

Determine the CO utilization for reactions in questions 2 and 3.

- 0 100%, 83%
- 29%, 83%
- 90%, 73%
- 🤍 19%, 45%

No, the answer is incorrect. Score: 0

Accepted Answers: 100%, 83%

5)

0.2

4)

3 points

Consider an indirect reduction of hematite to iron at 900⁰C in a co-current manner with CO in the blast furnace. Carry out a mass balance and find out how many moles of CO are required for producing 2 moles of Fe.

For $Fe_2O_3 \rightarrow Fe_3O_4$, $CO/CO_2=0.0$, For $Fe_3O_4 \rightarrow FeO$, $CO/CO_2=0.2$, and For $FeO \rightarrow Fe$, $CO/CO_2=2.5$

\bigcirc	1.0	moles	of	CO
------------	-----	-------	----	----

- 3.0 moles of CO
- 5.5 moles of CO
- 10.5 moles of CO

No, the answer is incorrect. Score: 0

Accepted Answers: 10.5 moles of CO

6)

1 point

Calculate the pressure drop (approximate;y) for a laboratory scale packed bed through which air is passed, for the following conditions: Column diameter=0.2m

Column height=2.0m Particle diamter=0.01m Shape factor=0.8 Void fraction=0.4

Volumetric gas flow rate=0.04m³/s

Viscosity of air=1.85*10⁻⁵kg/m-s

Density of air=1.21kg/m³

- 7.6*10³N/m³
- 8.6*10³N/m³
- 9.6*10³N/m³
- 6.6*10³N/m³

No, the answer is incorrect. Score: 0

Accepted Answers: 8.6*10³N/m³

7)

2 points

Estimate the minimum fluidization velocity for hematite particles 150microns in diameter, in hydrogen at 900⁰C and at 1atm pressure. Also estimate the elutriation velocity for the same. Data:

 $\rho_s = 5.25 \times 10^3 \text{kg/m}^3$

µ _g =2.2*10 ⁻⁵ kg/m-s	
$\rho_g = 2.05 \times 10^{-2} \text{kg/m}^3$	

- 0.01m/s, 1.5m/s
- 0.02m/s, 2.0m/s
- 0.03m/s, 3.0m/s
- 0.04m/s, 2.5m/s

No, the answer is incorrect. Score: 0

Accepted Answers:

0.03m/s, 3.0m/s

Previous Page

End

