Juises » Iron Maki	ng A	nnouncements	Course	Ask a Question	Progress	Mentor
Jnit 4 - Iroı	n Making V	Neek 2				
Course outline	Assignm	nent 2				
	The due date for	r submitting this a	ssignment ha	as passed. <mark>Due on</mark> 2	2018-02-28,	00:00 IST.
How to access the portal	Submitted as	signment				
Iron Making	1) Data for Ques	tions 1 to 3:				1 poi
Week 1	Blast volume = 60	00 m ³ -STP/min				
DOWNLOAD	Blast temperature	=1200 ⁰ C				
VIDEOS	PCI rate=170 kg/T	ΉM				
Iron Making Week 2	Wind consumptior	n=1200 m ³ /THM				
Iron Making	The Raceway Adia	abatic Flame Temp	erature (RAF	T) in ^o C is approximate	ely:	
Lecture 6	2000					
Iron Making	1900					
Lecture 7	2200					
Iron Making	2300					
Lecture 8	No, the answer	is incorrect.				
Lecture 9	Accented Answ	vers.				
Iron Making	2200	vers.				
Lecture 10	2) It is now decid	led to increase the	PCI rate to 3	10kg/THM The RAFT	now is [.]	1 poi
O Quiz :						
Assignment 2	About 9%	lower than before				
 iron-making- week2- 	About 3%	higher than before				
assignment2-	About 3%	lower than before				
501011011	No, the answer	is incorrect				
Iron Making - Week 3	Score: 0					
	Accepted Answ	vers:				
Iron Making - Week 4	About 9% lower	than before				
	3) Which of the fo	ollowing processes of	could increase	e the RAFT back to its o	original value	1 poi
Iron Making - Week 5	(approximately) ke	eping the PCI rate	at 310kg/THN	1?		
	Reduce b	last temperature by	1000 ⁰ C			
Iron Making Week 6	Inject blas	st with 25% Oxygen	(Oxygen enri	chment)		
WCGR U	Both first	and second process	ses			
Iron Making	None of the	ne above				
WEEN /	No, the answer	is incorrect.				
	Score: 0					

Interactive Session with Students

Inject blast with 25% Oxygen (Oxygen enrichment)

4) Questions 4 to 7: True or False: Preheating of the blast air results in reduction in the consumption of coke.

TrueFalse

No, the answer is incorrect. Score: 0

Accepted Answers:

True

5)

The exhaust gas of the blast furnace has high calorific value and therefore it is used in preheating the air.

```
TrueFalse
```

No, the answer is incorrect. Score: 0

Accepted Answers: True

6)

0.25 points

0.25 points

0.25 points

0.25 points

0.25 points

0.25 points

The moisture content in the sinter mixture and the amount of fuel (coke breeze) in the sinter mixture determine the rate of forward travel of flame front.

\bigcirc	True
	False

No, the answer is incorrect. Score: 0

Accepted Answers: True

7)

At the end of the agglomeration process, the kind of structure formed is known as snowball structure.

TrueFalse

No, the answer is incorrect. Score: 0

Accepted Answers: True

8) Green balls produced during pelletization:

- Have high strength
- Have low strength
- Can be used directly as blast furnace feed
- None of the above

No, the answer is incorrect. Score: 0

Accepted Answers:

Have low strength

9) What property of the exhaust gas of the blast furnace makes it useful further?

- Good calorific value
- High temperature
- High pressure
- High content of fines

Iron Making - - Unit 4 - Iron Making Week 2

No, the answer is incorrect.	
Score: 0	
Accepted Answers:	

Good calorific value

10)Which of the following iron oxides is an oxygen-deficient non-stoichiometric compound? 0.25 points

- Hematite
- Magnetite
- Wustite
- all of the above

No, the answer is incorrect. Score: 0

Accepted Answers:

Wustite

11)Which of the following zones is a maximum temperature region in the sinter bed? **0.25 points**

- Ignition period
- Cooling of sinter
- Flame front
- Combustion zone

No, the answer is incorrect. Score: 0

Accepted Answers: Flame front

12)The difference in the preheating zone above and below the combustion zone as it travels **0.5 points** from top to bottom of the sinter bed is as follows:

Above and below the combustion zone, preheating of sinter bed takes place.

Above the combustion zone, preheating of the sinter bed takes place and below it preheating of air takes place.

Above and below the combustion zone, preheating of air takes place.

Above the combustion zone preheating of air takes place and below it preheating of sinter bed takes place.

No, the answer is incorrect. Score: 0

Accepted Answers:

Above the combustion zone preheating of air takes place and below it preheating of sinter bed takes place

13)Acidic sinter has the following properties:

Fayalite is a major phase.

- No limestone addition.
- Weak sinter.
- Both first and second properties.

No, the answer is incorrect. Score: 0

Accepted Answers: Both first and second properties.

14) The feed size in pelletization is:

- -10 to +3 mm
- 🔍 +3 mm
- 50 microns and above
- About 50 microns and below.

No, the answer is incorrect. Score: 0 0.5 points

0.5 points

Iron Making - - Unit 4 - Iron Making Week 2

Accepted Answers: About 50 microns and below.

15)Calculate the approximate equilibrium constant and CO/CO_2 ratio for reduction of wustite **0.5 points** to iron by CO at 900^OC given that the Gibbs free energy change of the reaction is 9.5kJ.

```
1.5 and 0.3
```

- 2.5 and 0.4
- 0.3 and 1.5
- 0.4 and 2.5

No, the answer is incorrect. Score: 0

Accepted Answers: 0.4 and 2.5

16)An ore containing 45% Fe_2O_3 and 55% SiO_2 is subjected to magnetic separation. After **1.5 points** separation, the tailing consists of 80% SiO_2 and concentrate consists of pure magnetite. If the mass flow rate of the ore is 1ton/hr, find the mass flow rate of magnetite in the tailing and concentrate.

- 137.5 kg/hr and 312.5 kg/hr
- 117.5 kg/hr and 112.5 kg/hr
- 147.5 ton/hr and 312.5 ton/hr
- 137.5 ton/hr and 412.5 ton/hr

No, the answer is incorrect. Score: 0

Accepted Answers: 137.5 kg/hr and 312.5 kg/hr

17)The input is admitted to the sintering plant at 1 ton/hr and consists of 10% flue dust, 70% **1.5 points** ore, 10% coke and 10% water. 25% loss of volatiles from the sinter was found. Calculate the loss of volatiles and amount of sinter produced.

- 150 kg/hr and 450 kg/hr
- 200 kg/hr and 550 kg/hr
- 250 kg/hr and 750 kg/hr
- 300 kg/hr and 650 kg/hr

No, the answer is incorrect. Score: 0

Accepted Answers: 250 kg/hr and 750 kg/hr

Previous Page

End

G+

Iron Making - - Unit 4 - Iron Making Week 2

NASSCOM®

Funded by

Government of India Ministry of Human Resource Development

Powered by

