Progress

NPTEL » Modeling of tundish steelmaking process in continuous casting

Mentor

Unit 5 - Week 4

Course outline

course work?

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Feedback

Download Videos

Text Transcripts

Lecture 16: Fluid Flow

Conservation Equation

Lecture 18: Momentum

Lecture 19: Energy

Conservation Equation

Conservation Equation

Quiz : Assignement 4

Fundamentals

Lecture 17: Mass

Assignement 4

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Refer table for Symbols Symbols Density Flow shear stress Time Directions (i=1,2,3) x_i Turbulent kinetic energy Turbulent dissipation energy Cartesian space coordinate x,y,z Pressure p Velocity components in x,y,z direction u,v,w D Substantive or total derivative \overline{Dt} Turbulent viscosity μ_t S_M Momentum source term Mean components of deformation S_{ij} Viscous stresses τ_{ij} Mixing length U Time average components of velocity (u,v,w) 1) Transition from laminar to turbulent flow is characterized by a dimensionless quantity known as Reynold Number

None of the above No, the answer is incorrect. Score: 0 Accepted Answers: Reynold Number

The momentum transport due to the motion of the fluid itself in the flow direction is termed as Convective momentum transfer

Diffusive momentum transfer

Viscous momentum transfer

Froude Number

Weber Number

Score: 0 Accepted Answers: Convective momentum transfer

No, the answer is incorrect.

None of the above

Newton's viscosity law's states that

None of the above No, the answer is incorrect. Score: 0 Accepted Answers:

Shear stress between adjacent fluid layers is equal to the velocity gradients between the two layers

Shear stress between adjacent fluid layers is inversely proportional to the velocity gradients between the two layers

Shear stress between adjacent fluid layers is proportional to the velocity gradients between the two layers

Shear stress between adjacent fluid layers is proportional to the velocity gradients between the two layers

In a Newtonian fluid, the viscous stresses are

 Equal to the rates of deformation Proportional to the rates of deformation None of the above No, the answer is incorrect.

Inversely proportional to the rates of deformation

Accepted Answers: Proportional to the rates of deformation

Score: 0

Dynamic viscosity, μ relates stresses to...... while Second viscosity, λ, relates stresses to the

 Linear deformation and Volumetric deformation Volumetric deformation and Linear deformation Linear deformation and Volumetric expansion

None of the above No, the answer is incorrect. Accepted Answers: Linear deformation and Volumetric deformation

According to momentum conservation principle

Rate of increase of momentum of fluid particle=Sum of forces on fluid particle Rate of increase of momentum of fluid particle=Work done by forces on fluid particle Rate of increase of momentum of fluid particle= Work done by forces on a fluid element

None of the above No, the answer is incorrect. Score: 0 Accepted Answers: Rate of increase of momentum of fluid particle=Sum of forces on fluid particle

1133.53 s 1271.23 s 1337.56 s

7) If the volume of tundish is 3.82 m^3 and volumetric flow rate is 0.00337 m^3/s , theoretical residence time of fluid in tundish will be

None of the above No, the answer is incorrect. Score: 0 Accepted Answers: 1133.53 s

Accepted Answers:

8) X-component of momentum equation is

 $\rho \frac{Du}{Dt} = \frac{\partial(\tau_{xx})}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + S_{Mx}$

 $\rho \frac{du}{dt} = \frac{\partial (-p + \tau_{xx})}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + S_{Mx}$ $\rho \frac{Du}{Dt} = \frac{\partial (-p + \tau_{xx})}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + S_{Mx}$ None of the above No, the answer is incorrect. Score: 0

 $\rho \frac{Du}{Dt} = \frac{\partial (-p + \tau_{xx})}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + S_{Mx}$

9) Unsteady three-dimension mass conservation equation in a compressible fluid is written as $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{dw}{dz} = 0$

 $\frac{\partial \rho}{\partial t} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{dw}{dz}$ $\frac{\partial \rho}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$ None of the above No, the answer is incorrect. Score: 0 Accepted Answers:

 $C = \frac{n^n \theta^{n-1}}{(n-1)!}$

10) C-curve for n well mixed tanks in a series is given by equation

 $C = \frac{n^n \theta^{n-1} e^{-n\theta}}{n!}$ None of the above No, the answer is incorrect. Score: 0 Accepted Answers: $C = \frac{n^n \theta^{n-1} e^{-n\theta}}{(n-1)!}$

 $C = \frac{n^n \theta^{n-1} e^{-n\theta}}{(n-1)!}$

 $\frac{\partial \rho}{\partial t} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$

(Where θ is dimensionless time)

Due on 2020-02-26, 23:59 IST. 1 point

1 point