

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -



In association with
NASSCOM®
Funded by







The Barrett and Nix model required an activation energy of grain boundary diffusion activation energy whereas the creep data from  $\Upsilon$ -TiAl could be explained with grain boundary diffusion activation energy.

The Barrett and Nix model required an activation energy of grain boundary diffusion activation energy whereas the creep data from  $\Upsilon$ -TiAl could be explained with grain boundary diffusion activation energy.

The Barrett and Nix model applies to grain boundary sliding and creep data from  $\Upsilon$ -TiAl corresponded to the power law breakdown regime.

No, the answer is incorrect. Score: 0

## **Accepted Answers:**

The Barrett and Nix model required an activation energy of grain boundary diffusion activation energy whereas the creep data from  $\Upsilon$ -TiAl could be explained with grain boundary diffusion activation energy.

| 9) The creep parameters n, p and Q stand for                                                                                                                                                                                                                                | 1 point                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Grain size exponent, stress exponent and activation energy respectively                                                                                                                                                                                                     |                           |
| Stress exponent, grain boundary exponent and activation energy respectively                                                                                                                                                                                                 | 1                         |
| Strain exponent, grain size exponent and temperature exponent respectively                                                                                                                                                                                                  | £                         |
| Stress exponent, grain size exponent and activation energy respectively                                                                                                                                                                                                     |                           |
| No, the answer is incorrect.<br>Score: 0                                                                                                                                                                                                                                    |                           |
| <b>Accepted Answers:</b><br>Stress exponent, grain size exponent and activation energy respective                                                                                                                                                                           | <sup>∍ly</sup> in         |
| 10)The post creep microstructure shown in the figure below indicates deformation controlled by                                                                                                                                                                              | 1 point<br>8 <sup>+</sup> |
|                                                                                                                                                                                                                                                                             |                           |
| Ref. R. Korla, A. H. Chokshi, Metall. Mater. Trans A, 2014                                                                                                                                                                                                                  |                           |
| Viscous glide creep                                                                                                                                                                                                                                                         |                           |
| Power law breakdown                                                                                                                                                                                                                                                         |                           |
| Grain boundary sliding                                                                                                                                                                                                                                                      |                           |
| Harper-Dorn creep                                                                                                                                                                                                                                                           |                           |
| No, the answer is incorrect.<br>Score: 0                                                                                                                                                                                                                                    |                           |
| Accepted Answers:<br>Grain boundary sliding                                                                                                                                                                                                                                 |                           |
| 11)In first order kinetic reaction, the rate of the reaction is directly proportional to theof the reactant.                                                                                                                                                                |                           |
|                                                                                                                                                                                                                                                                             |                           |
| No, the answer is incorrect.                                                                                                                                                                                                                                                |                           |
| Accepted Answers:                                                                                                                                                                                                                                                           |                           |
| (Type: String) concentration                                                                                                                                                                                                                                                |                           |
|                                                                                                                                                                                                                                                                             | 1 point                   |
| 12During creep studies, there is always a risk of phase transformation                                                                                                                                                                                                      | 1 point                   |
| or change in microstructural length scales due to exposure to high<br>temperature. What would be the correct approach to ensure that the ma<br>characteristics such as phases, microstructural length scales such as gra<br>size / interparticle spacing etc do not change? | aterial<br>ain            |
|                                                                                                                                                                                                                                                                             |                           |

Heat treat the sample at a test temperature lower than the creep test temperature. Plastically deform the material at room temperature and subsequently heat treat the sample at a test temperature higher than the creep test temperature. Heat treat the sample at a temperature higher than the creep test temperature. Plastically deform the material at room temperature and subsequent heat treat the sample at a test temperature lower than the creep test temperature. No, the answer is incorrect. Score: 0 **Accepted Answers:** Heat treat the sample at a temperature higher than the creep test tempe  $\prod$ <sup>13</sup>A material displayed a strain rate of deformation of  $4.5 \times 10^{-7}$  s-1 after a time of 100 h under an applied stress of 45 MPa. What will be the deformation rate after a time of 300 h if the material is displaying a logarithmic creep behavior?  $\varepsilon = \varepsilon_0 + \alpha \ln(1 + \gamma t)$  $\odot$  5.4 x 10<sup>-7</sup> s<sup>-1</sup> 3.37 x 10<sup>-7</sup> s<sup>-1</sup>  $1.8 \times 10^{-8} \text{ s}^{-1}$ 2.72 x 10<sup>-7</sup> s<sup>-1</sup> No, the answer is incorrect. Score: 0 **Accepted Answers:** 2.72 x 10<sup>-7</sup> s<sup>-1</sup>

**Previous Page** 

End