

Go Mi

overnment of India	stress of deformation to applied strain during plastic deformation
nistry of Human Resource De	No, the answer is incorrect. Score: 0
	Accepted Answers:
	The strain hardening exponent is the exponent of strain showing the dependence of flow stress on plasti
	strain whereas the stress exponent is the exponent of stress relating strain rate of deformation to applied
	stress during creep deformation
	 4) A high melting point material is expected to bear a high elastic modulus value. 1 pcf True False No, the answer is incorrect. Score: 0 Accepted Answers: True
	🔍 True 🔰
	C False
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	True
	5) The equicohesive temperature is defined as the test temperature below which fine grained 1 pc ^{S+} materials are strong and above which they become weak compared to coarse grained materials.
	True
	False
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	True
	6) The dependence of vacancy concentration (N) on temperature (T) is given by the following 1 point relation, where N_o is the initial concentration
	$N=N_oexp(Q/RT)$
	$(\mathbf{v} - \mathbf{v}_0 c u p(\mathbf{v} / \mathbf{i} \mathbf{c} \mathbf{r}))$
	$N_o = Nexp(Q/RT)$
	$N_o = Nexp(Q/101)$
	$N=N_o+kst T$
	$N = N_0 + \kappa * I$
	$N = N_o - k * T$
	No, the answer is incorrect.
	Score: 0
	Accepted Answers:
	$N_o = Nexp(Q/RT)$
	7) The strength of a material typically decreases when we increase the number of grain 1 point boundaries contained within the material
	True
	Ealse
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	False
	8) The activation energy of lattice diffusion is lower than the activation energy of grain 1 point
	boundary diffusion.

True True	
C False	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: False	
9) A dislocation is	1 pc f
A line defect that forms when the temperature is higher than a critical temperatur	e 🔽
\bigcirc A line defect that forms when the applied stress is greater than a critical stress	
A line defect that forms when the applied stress is lower than a critical stress.	
A line defect that forms when the temperature is lower than a critical temperature	
No, the answer is incorrect.	in
Score: 0	g.
Accepted Answers: A line defect that forms when the applied stress is greater than a critical stress	U
	1
0Recovery during annealing of a material is defined as	1 point
A process that leads to reduction of stored energy by removal or rearrangement	of defects
A process that leads to the creation of strain free grains	
A process that leads to increase in stored energy of the material	
A process that leads to creation of strained grains	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
A process that leads to reduction of stored energy by removal or rearrangement of defe	cts
1)The difference between an edge dislocation and a screw dislocation is	1 point
Edge dislocations have their Burgers vector parallel to the dislocation line and So dislocations have Burgers vector perpendicular to the dislocation line	crew
Edge dislocations have their Burgers vector perpendicular to the dislocation line dislocations have their Burgers vector parallel to the dislocation line	and Screw
None of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers:	rew dislocatior

End

f У ▶ in 8⁺