Assignment 7

1) For biological sample inspection in SEM, the mode used is

- ESEM (Environmental SEM)Low VacuumHigh vacuum

2) Energy of Backscattered electrons is \qquad (than) secondary electronssame aslower

- greater

3) Interaction volume is dependent on \qquadbeam energyspecimen materialangle of incidence

- All of the above

4) If the condenser lens strength increases, the demagnification \qquad and the probe size \qquad

- increases and decreasesdecreases and increasesboth increasesboth decreases

5) Gaussian probe diameter is
diameter with spherical aberration
diameter with chromatic aberration

- ideal diameter with no aberration
with both spherical and chromatic aberration

6) The secondary electron (SE)yield and back scattered electron (BSE)yield increases as the glancing angle of incidence

- decreases
increases
remains constantincreases and immediately decreases

7) Which of the following mode of imaging is preferred for good topographical contrast?

BSE mode

- SE mode
- EBSD

EDS or WDS
8) Photo multiplier detector is used for \qquad imaging

- EBSD
topographical contrast
- 'Z' or atomic contrast

WDS
9) Back scttered electrons are produced due to the
thermally activated electrons
free eletrons in sample
inelastic scattering

- elastic scattering

10) As the applied voltage increases, the interaction volume \qquad

- increasesdecreasesremains constantfluctuates with time

11) Magnification in SEM is dependent on excitation of
scan coilsobjective lenscondensor lensNone of the above
12) \qquad contrast component arises when contrast is carried by certain portion of BSE energy distribution

Trajectory

- EnergyNumberAll of the above

13) Depth of focus can be given by \qquad where $\alpha=$ semi apex angle/ angle of beam convergence and $r=$ half of maximum field of view which remain in focus

- $2 \alpha / r$
$\alpha / 2 r$
- $2 \mathrm{r} / \mathrm{a}$
- $\mathrm{r} / 2 \alpha$

Assignment 8

1) The slope of curve η (backscattering coefficient) $\mathrm{Vs} Z$ (atomic number) \qquad with increase in Z valuedecreasesincreasesconstant
2) The trajectory for back scattered electrons and secondary electrons in SEM is \qquadstraight and curved respectivelycurved and straight respectivelycurved for bothstraight line for both
3) Voltage contrast arises due tovariation in local surface potentiallocalized specimen charginginsulating inclusions

- All of the above

4) The leakage magnetic field that causes contrast variation is mainly due tomagnetic domains passes through the free surfacefree electrons at sample surfacemagnetic second phase particles in sample
5) How the image appear in SEM, when the magnetic field contrast is present?
with brightest surface
complete dark surface

- with bright and dark bands
without any change in contrast

6) How the channeling effect occurs in the path of low atomic density?
due to absorption of fraction of electrons by the sample

- due to penetration of some fraction of electron beam more deeeply before scattering
due to penetration of some fraction of electron beam more deeeply after scattering
due to immediate scattering of electron beam

7) In kikuchi pattern why the kossel cones appear as straight lines on screen?

- angle involved is very small
angle involved is very large
angle involved can not be measured

8) The seperation between two lines of kikuchi band gives \qquad
inter planar spacing
the angle theta
(- the angle two theta

- lattice parameter

9) During EBSD measurement the sample will be tilted \qquad0 degrees and rotated to 360 degrees50 degrees90 degrees

- 70 degrees

