Assignment 6

1) Distance between final lens and sample surface in SEM is called \qquad WORKING DISTANCE
2) Smaller convergence angle of the electron beam in SEM leads to \qquad Depth of Focus
smaller

- greater
- no change in

3) Which type of secondary electrons are produced by the back scattered electrons exiting the sample

- SEI
- SE II
- SE III

4) The electrons emitted after the beam interacts with the sample, having energy less than 50 eV is conventionally called as

- Auger electrons

Back scattered electrons
transmitted electrons

- Secondary electrons

5) As the Working distance in SEM decreases
resolution is better
Depth of Focus decreases
Magnification increases

- All of the above

6) Three dimentional kind of imaging is possible in SEM due to its
(1) SE and BSE electrons

- High depth of field

High magnification
High depth of focus
7) The qualitative and quantitative elemental analysis is done by collecting
back scattered electrons
X-rays form the surface of few nanometers thick
secondary electrons

- X-rays from depth of few microns

8) Misorientation across grain boundaries can be analysed by

- EBSD-orientation mapping

EDS-elemental mapping
EBSD-kikuchi patterns
BSE imaging
9) What is the advantage of WDS than EDS?
easy operation
has multiple detectors

- can even detect trace elements
can use high magnification

10) What source of diffractor is used in WDS and why?
(2) polymers to capture all wavelength of X-rays from organic and inorganic specimens

Organic crystals to enable high wavelength X -rays from elements with lower atomic number
silicon crystals to enable high and low wavelength X -rays
Quartz crystals to enable low wavelength X -rays from elements with higher atomic number

