Assignment 4

1) As the gradient of optical path difference grows shallow, image contrast \qquad in Differential interference contrast microscopy
increases
remains un altered
decreases
2) Closely spaced rays are generated by \qquad for sample inspection in DIC microscope

Beam splitter
3) In the DIC microscopy, amplitude is related to the \qquad of optical path difference profile

\qquad
Derivative
4) Fluorochromes exhibit distinct excitation and emission spectra that depends on their
atomic structure and electron resonance properties
atomic weight and electron resonance properties
atomic structure and atomic weight
5) Dichromatic mirror in fluorescence microscope is made of multiple layers of \qquad material
\square
6) Which crystal is generally used in the generation of polarised light among the following?

- Alumina
- Gold
- Calcite
- Quartz

7) What property allows transparent cystals' use in polarisation microscopy?
optically isotropic

- optically anisotropic
both a and b
none

8) The purpose of using compensator in polarisation microscope is to get
good resolution
relative retardation
specific phase shift
both b and c
9) Elliptically polarised light has
different propagation axis but vibrate in mutually parallel planessame propagation axis but vibrate in mutually parallel planes
different propagation axis but vibrate in mutually perpendicular planes

- same propagation axis but vibrate in mutually perpendicular planes

Assignment 5

1) Establishing Unity magnification eliminates both

Curvature of field and astigmatism

- Coma and Lens distortion

Spherical aberration and astigmatism
curvature of field and Coma
2) Correction of astigmatism in electron microscopy is possible by insertion of \qquad in lens system to compensate the non-circularity of the image beam profile on the image plane

- Apertures
optical lens
- Stigmators

3) Space charge effect associated with low beam intensity is less at \qquad

- low voltage
- high voltage
all voltages

4) Optimum size of aperture obtained by taking both resolution and lens aberration into consideration is proportional to \qquad where Cs= coefficient of spherical aberration and λ is wavelength of electron beam
○
$\left(\mathrm{C}_{\mathrm{s}} / \lambda\right)^{\wedge} 0.25$

0
$\left(\lambda / C_{s}\right)^{n} 0.25$
\bigcirc
$\left(\lambda / C_{S}\right)^{\wedge} 0.5$
\bigcirc
$\left(\mathrm{C}_{\mathrm{s}} / \lambda\right)^{\wedge} 0.5$
5) Coefficient of spherical aberration is proportional to \qquad , where $\mathrm{V}=$ Potential, $\mathrm{N}=$ number coils and $\mathrm{l}=$ current
$(\mathrm{NI})^{\wedge} 4 N^{\wedge} 2$
((VN)^2//^4)

- $\mathrm{V}^{\wedge} 2 /(\mathrm{NI})^{\wedge} 4$
($\left.\left.\right|^{\wedge} 4 /(\mathrm{VN})^{\wedge} 2\right)$

6) Most widely used filament materials in electron microscopes are

Lanthanum hexa boride (LaB6)
Tungsten(W)
Zirconium (Zr)

- Both a and b

Both b and c
7) why to use Wehnelt cylinder near electron gun?
to increase the intensity of electron

- to make the electrons cross over
to accelerate electrons
to decelerate electrons

8) Generally, the brightness of
thermionic tip is greater than field emmiting tip

- field emmiting tip is greater than thermionic tip
equal in both thermionic and FE tipsnot predictable

9) Energy spread of electrons is

- Less in FE tip than thermionic tipLess in thermionic tip than FE tipequal in both tipscan not predict

