Assignment 1

- 1) As the spacing in a grating increases the distance between the corresponding diffraction spots
 - increases
 - decreases
 - remains same
- 2) Resolution of a microscope or imaging system is dependent on
 - Refractive index of the medium
 - wavelength of the illuminating source
 - Apex angle
 - All of the above
- 3) According to Abbe's criterion atleast _____ diffracted beams from object should enter the objective lens for image formation
 - Five
 - Four
 - Three
 - Two
- 4) Diffraction pattern appears _____ to grating direction perpendicular
- 5) Light has charectre of
 - Wave
 - Quanta
 - Both wave and quanta
 - inert

- 6) If 'x' is the distance between the object and lens and 'y' is the distance from the lens to the image, then the magnification is
 - x/y
 - x*y
 - y/x
 - x+y
- 7) When two waves of same amplitude and phase difference of half the wavelength interacts_____ interference takes place. destructive
- 8) The ray which passes through the center of lens
 - deviates from its path
 - passes through the center without deviation
 - passes through the center with deviation
 - refracts at an angle of 45 degrees

Assignment 2

- 1) Light grasp of a microscope depends on
 - Diameter of objective lens
 - Focal length of objective lens for a given diameter
 - Both of the above
 - None of the above
- 2) Collection angle for immersion objective lens is _____ (than) dry objective lens
 - smaller
 - greater
 - same as
- 3) The range of positions of the object for which our eye can detect no change in the sharpness of the image is
 - Depth of field
 - Depth of focus
 - Field of view
 - None of the above
- 4) Field of view of a microscope depends on
 - objective lens
 - Occular lens or eye piece
 - magnification of microscope
 - All of above
 - None of above

- 5) Transparent specimens are invisible under microscope because the difference in intensity of background and specimen/object is
 - infinity
 - 1
 - 0
- 6) Spherical aberration can be eliminated by use of
 - Converging lens with high refractive index
 - Combination of converging and diverging lenses with same refractive index
 - Diverging lens with high refractive index
 - Combination of converging and diverging lenses with different refractive index
- 7) Chromatic aberration arises with
 - Monochromatic light
 - Polychromatic light
 - Coherent light
 - Incoherent light
- 8) What is achromatic doublet
 - Combination of lenses to eliminate spherical aberration
 - Combination of lenses to eliminate chromatic aberration
 - Combination of lenses to eliminate both spherical and chromatic aberration
 - None of the above
- 9) What are the lenses present in eyepieces
 - Condenser lens and eye lens
 - Objective lens and field lens
 - Field lens and eye lens
 - Objective lens and eye lens
- 10) Filters are used to adjust
 - Intensity of illumination
 - Wavelength of illumination
 - Both intensity and wavelength
 - amplitute of illumination

Assignment 3

- 1) In phase contrast microscopy, the contrast is due to the difference in
 - optical path length
 - phase
 - refractive index of specimen/material and medium
 - thickness of specimen/material
 - All of the above
- 2) Function of a phase plate in phase contrast miscroscopy is to
 - advance the phase
 - reduce the amplitude
 - both of the above
 - none of the above
- 3) A pure amplitude object absorbs energy and reduces the _____ but no change in the _____
 - amplitude, intensity
 - phase, amplitude
 - amplitude, phase
 - intensity, amplitude
- 4) In a phase contrast microscope, the refractive index of medium and specimen are 1.2 and 1.7 respectively. For a 2 micron thick specimen what is the optical path length difference generated?
 - 2 micron
 - I micron
 - 0.5 micron
 - 0.25 micron

- 5) Transmission optical microscope has the following modes
 - Bright field and dark field
 - Bright field and polarised light
 - Dark field and polarised light
 - only polarised light
- 6) Which of the condenser apperture lenses are used for phase contrast mode in transmission optical microscope?
 - Iens 1 and 2
 - lens 3
 - Ien 2 and 3
 - lens 4 and 5
- 7) In bright field imaging of OM, the high reflectivity of the material leads to
 - poor contrast
 - poor resolution
 - high image quality
 - none of the above
- 8) If the sample is not focussed completely in OM, what it infer?
 - Sample is a noncoductor
 - Sample is a good coductor
 - Sample has flat surface
 - sample surface is irregular