Course outline			
How does an NPTEL online course work?			
Week-01			
Week-02			
Week-03			
Week-04			
Week-05			
Week-06			
Week-07			
Week-08			
 Synthesis Routes of Nanomaterials (II) 			
 Mechanical Properties of Nanomaterials (I) 			
 Mechanical Properties of Nanomaterials (II) 			
Feedback for Week 8			
Quiz: Week-08: Assignment-08			
 Week-08: Assignment-08 Solution 			
Week-09			
Week-10			
Week-11			
Week- 12			

NPTEL » Nanomaterials and the	eir Properties Announcements About the Course Ask a	Question Progress Mentor
Course outline	Week-08: Assignment-08	
How does an NPTEL online course work?	The due date for submitting this assignment has passed.	D
	As per our records you have not submitted this assignment.	Due on 2021-09-22, 23:59 IST
Week-01	During mechanical/ball milling, nanocrystalline materials form at	1 poin
Week-02	Room Temperature Elevated Temperature	
Week-03	Cryogenic Temperature	
Week-04	All of the above	
Week-05	No, the answer is incorrect. Score: 0 Accepted Answers:	
Week-06	All of the above	
Week-07	2) During sintering, the coalescence of the powder particles occurs due to	1 poin
Week-08	Pressure	
Synthesis Routes of	Temperature Pressure and Temperature	
Nanomaterials (II) Mechanical Properties of	Composition	
Nanomaterials (I)	No, the answer is incorrect. Score: 0	
 Mechanical Properties of Nanomaterials (II) 	Accepted Answers: Pressure and Temperature	
Feedback for Week 8	Top-Down approach to synthesize nanomaterials is approach.	1 poin
Quiz: Week-08: Assignment-08	Destructive	
• Week-08: Assignment-08	Non-destructive	
Solution	Energy Intensive Energy Intensive	
Week-09	No, the answer is incorrect. Score: 0	
Week-10	Accepted Answers: Destructive	
Week-11		
Week- 12	The stress strain relationship for a perfectly elastic material is (K – constant)	1 poin
DOWNLOAD VIDEOS	Stress = K*strain Stress > K*strain	
	Stress < K*strain	
	None of the above No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	Stress = K*strain	
	5) The point of change of slope at the upper end of the linear region of the stress-strain curve is	1 poin
	Fracture Point	
	Ultimate Tensile Strength Yield Point	
	O Proof Stress	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Yield Point	
	Brinell Hardness Test involves the use of indenter.	1 poin
	Conical	
	O Pyramidal Diamond	
	Spherical	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Spherical	
		d main
	7) The relationship between the stress and strain for the plastic region of the stress-strain curve is given by: Stress = K*strain	1 poin
	Stress = K*strain*n	
	Stress = K/strain	
	O Stress = K(1+strain)^n No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	Stress = K*strain^n	
	8) The relationship between dislocation line (L) and Burger vector (b) for screw dislocation is	1 poin
	b is parallel to L	
	b is perpendicular to L Both	
	None	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: b is parallel to L	
	The material which involves the strain begin dependent on time and temperature is known as	1 poin
	Elastic	. pun
	Plastic	
	○ Viscoelastic ○ Brittle	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	Viscoelastic	
	10) According to Hall-Petch effect, the strength of a material is dependent on the grain size as	1 poin
	Strength increases with decreasing grain size	
	Strength increases with decreasing grain size Strength is independent of the grain size	
	Strength become equal to grain size.	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	

Strength increases with decreasing grain size