NPTEL » Nanomaterials and the	neir Properties Announcements About the Course Ask a Question Progress	Mentor
Course outline	Week 11: Assignment 11	
How does an NPTEL online course work?	The due date for submitting this assignment has passed. Due on 2021-10-	13, 23:59 IST
Veek-01	As per our records you have not submitted this assignment. 1) Which of the following parameter is used to assess the magnetic ability of a material?	1 poin
Veek-02	Magnetic flux density	i poin
Veek-03	Magnetization	
Veek-04	Susceptibility Magnetic dipole moment	
Veek-05	No, the answer is incorrect. Score: 0	
Veek-06	Accepted Answers: Susceptibility	
Veek-07	2) For a diamagnetic material, which of the following statement is correct (µr = relative permeability)?	1 poin
Veek-08	Ο μr > 2	
Veek-09	Ο μr < 1 Ο μr > 1	
Veek-10	\bigcirc µr = 1	
Veek-11	No, the answer is incorrect. Score: 0 Accepted Answers:	
Lecture 25-Magnetic	$\mu r < 1$	
properties of nanomaterials	3) For a paramagnetic material, which of the following statement is correct?	1 poin
 Lecture 26-Optical properties of nanomaterials (I) 	O Magnetic susceptibility < 0	
Lecture 27-Optical properties of nanomaterials (II)	Magnetic susceptibility > 0 Magnetic susceptibility = 0	
Quiz: Week 11: Assignment	Magnetic susceptibility = 0 Magnetic susceptibility = -1	
11	No, the answer is incorrect. Score: 0	
Week-11: Assignment-11 Solution	Accepted Answers:	
Feedback for Week 11	Magnetic susceptibility > 0	
eek- 12	The temperature of the antiferromagnetic-to-paramagnetic transition is termed as	1 poin
OWNLOAD VIDEOS	Curie–Weiss temperature Neel temperature	
	Antiferromagnetic Curie temperature	
	O Debye temperature	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Neel temperature	
	5) As we decrease the dimensionality particle, the magnetic moment is	1 poin
		i poiii
	O Decreases Increases	
	O Both of above	
	Independent on the dimension	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Increases	
	6) In multi-domain, coercivity increases with	1 poin
	Decreasing particle size	r poni
	Increasing particle size	
	O Increasing domain wall thickness	
	None of above	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Decreasing particle size	
	7) In the single domain, coercivitywith particle diameter.	1 poin
	Increase, decreasing	
	O Decrease, decreasing	
	O Increase, increasing	
	O Decrease, increasing	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Decrease, decreasing	
	 The thermal equilibrium concentration of the electrons in the conduction band and the holes in the valence band depends upon. 	1 poin
	Effective density of states	,
	Fermi energy level	
	O Both A and B	
	No, the answer is incorrect	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Both A and B	
	9) Exciton is a	1 poin
	Bound state of an electron	. poni
	Bound state of an electron Bound state of hole	
	Bound state of an electron and hole pair	
	Neither A nor B	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Bound state of an electron and hole pair	
	10) With reducing the size of the particle, which properties of semiconductor changed?	4 noin
	10) What reducing the size of the particle, which properties of semiconductor changed?	1 poin

O Density of states becomes more quantized

Band-gap shifts to higher energies

Both of above

None of above

Accepted Answers:

Both of above

Score: 0

No, the answer is incorrect.