NPTEL » Solar Photovoltaics: Principles, Technologies and Materials

Due on 2020-02-12, 23:59 IST.

Mentor

Unit 3 - Week 2 : Basic physics of semiconductors

Course outline Assignment 2 How does an NPTEL online The due date for submitting this assignment has passed. course work? As per our records you have not submitted this assignment. Week 1 : Introduction and Which of the following indicates monthly clearness index, where Solar radiation fundamentals H_d: Monthly average of the daily diffused radiation on a horizontal surface (kJ/ m²-day) Week 2: Basic physics of semiconductors Lecture 06 : Solar Radiation \bigcirc H_g/ H_d Measurements \bigcirc H_d /H_g Lecture 07 : Introduction to ○ Hg/ Ho Band Theory \bigcirc H_d/H_o Lecture 08 : Semiconductor Basics - I No, the answer is incorrect. Score: 0 Lecture 09 : Semiconductor Accepted Answers: Basics - II H_g/H_o Lecture 10 : Electrical Properties of Semiconductors Quiz : Assignment 2 Global minimum of conduction band and global maximum of valence band. Maximum of conduction band and minimum of valence band. Solar Photovoltaics: ■ Minimum of conduction band and maximum of valence band for given 'k'. Principles, Technologies and Materials: Week 2 Feedback Maximum of conduction band and minimum of valence band for given 'E'. Assignment-2 Solution No, the answer is incorrect. Score: 0 Week 3 : Carrier transport, Accepted Answers: Global minimum of conduction band and global maximum of valence band. generation and recombination in semiconductors Which of the following relations correctly expresses D(E) in 3-D: Week 4 : Semiconductor junctions \bigcirc D(E) α E² \bigcirc D(E) α E^{0.5} Week 5 : Essential \bigcirc D(E) α E⁻² characteristics of solar \bigcirc D(E) α E^{-0.5} photovoltaic devices No, the answer is incorrect. Week 6 : First Generation Score: 0 Solar Cells Accepted Answers: $D(E) \propto E^{0.5}$ Week 7: Second Generation Solar Cells which only 10% are ionized. What will be the hole concentration in such semiconductor? Week 8 : Third Generation Solar Cells ○ 10³ cm⁻³ ○ 10⁴ cm⁻³ **Text Transcripts** ○ 10¹⁰ cm⁻³ ○ 10¹⁷ cm⁻³ Download Videos No, the answer is incorrect. Accepted Answers: 104 cm-3 kJ/m²-day. 17438 19553 21887 22595 No, the answer is incorrect. Score: 0

No, the answer is incorrect.

Freeze out region

No, the answer is incorrect.

Intrinsic temperature region

Accepted Answers:

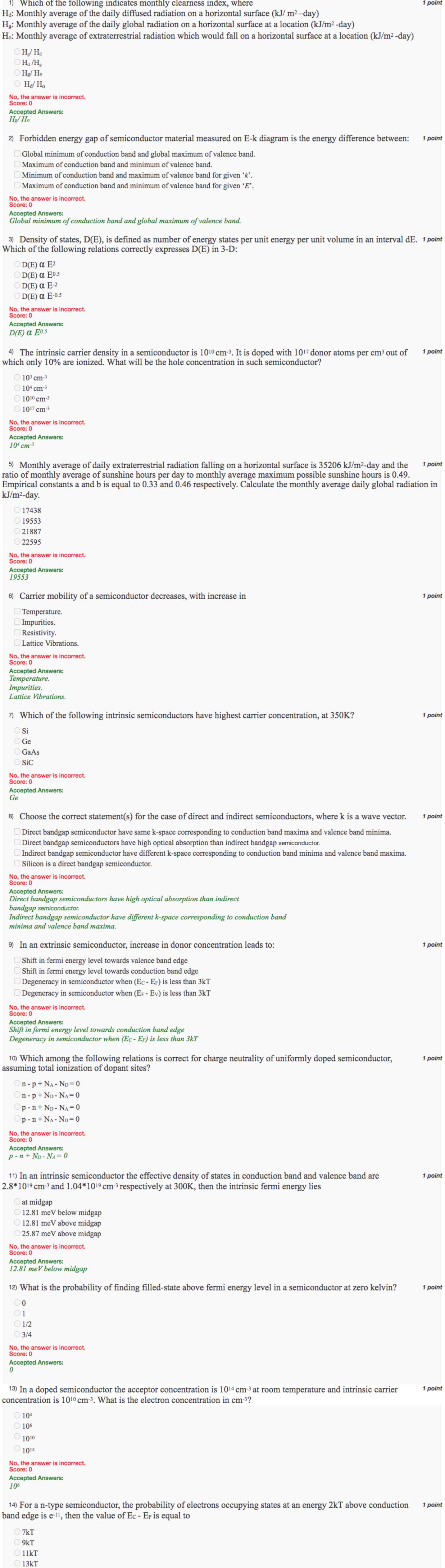
Extrinsic temperature region

Intrinsic temperature region

Extrinsic and intrinsic temperature regions

15) In case of doped semiconductor, In which temperature region(s) would semiconductor lie when carriers

concentration dominates over the number of dopant sites due to band to band excitation of carriers.


1 point

Accepted Answers:

Score: 0

Score: 0

9kT

