Assignment 6

The due date for submitting this assignment has passed. Due on 2018-03-21, 23:59 IST As per our records you have not submitted this assignment.

1 point

1) Which of the following statement is correct?

Below the critical nucleation rate, rapid nucleation takes place.
Nucleation rate always increases with increase in undercooling
Barrier to nucleation increases with increase in undercooling.
Undercooling required for homogeneous nucleation is larger than that for heterogeneous nucleation under the similar condition.

No, the answer is incorrect.
Score: 0
Accepted Answers:
Undercooling required for homogeneous nucleation is larger than that for heterogeneous nucleation under the similar condition.
${ }^{2)}$ During a phase transformation, nucleation rate of $10^{9} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ occurs at $250 \mathrm{~K} \quad 1$ point when the critical nucleation energy is $3 \times 10^{-19} \mathrm{~J}$. If the nucleation energy for critical sized nucleus is decreased by 10%, the nucleation rate $\left(\mathrm{m}^{-3} \mathrm{~s}^{-1}\right)$ will be
6×10^{12}
4×10^{11}

- 3×10^{14}
2×10^{13}
No, the answer is incorrect.
Score: 0
Accepted Answers:
6×10^{12}
${ }^{3)}$ The homogeneous nucleation rate of $10^{7} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ occurs at 300 K during a liquid 1 point to solid phase transformation when the nucleation energy for critical sized nucleus is 1 x $10^{-19} \mathrm{~J}$. The interfacial energy between the liquid-solid interface is $0.09 \mathrm{~J} \mathrm{~m}^{-2}$. If the interfacial energy is increased by 10%, the nucleation rate $\left(\mathrm{m}^{-3} \mathrm{~s}^{-1}\right)$ will be
- 2267
- 1238
- 3458
- 4623

No, the answer is incorrect.
Score: 0

Accepted Answers:

3458
${ }^{4)}$ The critical homogeneous nucleation rate is $10^{6} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ at 400 K . If it is desired 1 point to achieve a nucleation rate of $10^{9} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$, the nucleation energy for critical sized nucleus $\left(\Delta G^{*}\right)$ should be decreased by
[Assume $\mathrm{I}_{\mathrm{O}}=10^{42} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ and DG_{D} is significantly smaller than DG^{*}]
5.5%
6.5%
3.2 \%
. 8.3 \%
No, the answer is incorrect.
Score: 0
Accepted Answers:
8.3%
5) During homogeneous nucleation, the radius of critical nucleus is 0.6 nm . The radius of critical nucleus (in the shape of spherical cap) during heterogeneous nucleation with a contact angle of 75° will be0.4 nm0.5 nm0.6 nm
0.7 nm

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.6 nm
${ }^{6)}$ In heterogeneous nucleation, if the contact angle is 0^{0}, then the barrier to ${ }^{1}$ point nucleation will be

```
zero
O}
Infinity
can not be calculated
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
zero
7) During a heterogeneous nucleation (in the shape of a spherical cap), if the ${ }^{1}$ point energies associated with various interfaces are $\gamma_{\mathrm{SL}}=0.7 \mathrm{~J} \mathrm{~m}^{-2}, \gamma_{\mathrm{SM}}=0.02 \mathrm{~J} \mathrm{~m}^{-2}$ and γ_{LM} $=0.5 \mathrm{~J} \mathrm{~m}^{-2}$, then the ratio of $\left(\Delta \mathrm{G}^{*}\right)$ hetero to $\left(\Delta \mathrm{G}^{*}\right)$ homo is
0.017
0.124
0.068
0.094

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.068
8) Two specimens A and B of the same material have the average grain sizes $1 \mu \mathrm{~m} 1$ point and $30 \mu \mathrm{~m}$, respectively. During the solid state phase transformation, the nucleation rate (assuming that the nucleation occurs heterogeneously on grain boundaries) will follow which of the following trend under the identical conditions.

Higher in specimen A
Higher in specimen B
Same in both the specimen
Data in sufficient
No, the answer is incorrect.
Score: 0
Accepted Answers:
Higher in specimen A
9) During an interface controlled growth of copper, the activation barrier for an $\mathbf{1}$ point atomic jump is $5 \times 10^{-20} \mathrm{~J}$. If the jump distance is 0.1 nm , the growth rate at 1300 n (assuming a large undercooling) will be
[Assume lattice vibration frequency $=10^{13} \mathrm{~s}^{-1}$]
$11.5 \mathrm{~m} / \mathrm{s}$
$28.5 \mathrm{~m} / \mathrm{s}$
$61.6 \mathrm{~m} / \mathrm{s}$
. $94.7 \mathrm{~m} / \mathrm{s}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$61.6 \mathrm{~m} / \mathrm{s}$
10Which of the following is incorrect for diffusion controlled growth?
1 point
Parabolic growth
Growth is proportional to supersaturation
Velocity is inversely proportional to time
Growth rate is constant for a given undercooling
No, the answer is incorrect.
Score: 0
Accepted Answers:
Growth rate is constant for a given undercooling

Funded by
Government of India
Ministry of Human Resource Development
Powered by

