Unit 4 - Week-3

Course outline
How to access the portal ? Week-1 Week-2 Week-3 Solved Problem on Nucleation rate and How to determine the value of ysl Physical Concept \& Interfacial Energy How to determine the value of ysl (Physical Concept and Interfacial Energy) Interfacial Energy-I Interfacial Energy-II Heterogeneous Nucleation-I Quiz : Assignment-3 Week 3 Feedback Assignment-3 solution Week-4 Week-5 Week-6 Week-7 Week-8

Assignment-3

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.
${ }^{1)}$ The critical homogeneous nucleation rate of $10^{6} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ occurs at $300{ }^{1 \text { point }}$ K during liquid to solid phase transformation when the nucleation energy for critical sized nucleus is $1 \times 10^{-19} \mathrm{~J}$. The interfacial energy between the liquidsolid interface is $0.08 \mathrm{~J} \mathrm{~m}^{-2}$. If the interfacial energy is increased by 10%, the nucleation rate $\left(\mathrm{m}^{-3} \mathrm{~s}^{-1}\right)$ will be:
(a) 445.6
(b) 486.2
(c) 532.0
(d) 345.4

No, the answer is incorrect.
Score: 0
Accepted Answers:
(d) 345.4
2)

No, the answer is incorrect. Score: 0

Accepted Answers:
a
3) 1 point

No, the answer is incorrect.
Score: 0
Accepted Answers:
4) Q4 Which of the following conclusion can be drawn from the solution of question no. 31 point
(a) The activation energy (barrier for nucleation) for homogeneous nucleation is less compared to heterogeneous nucleation and hence the homogenous nucleation is difficult.
(b)The activation energy for heterogeneous nucleation is less compared to homogenous nucleation and hence the homogenous nucleation is difficult.
(c) The activation energy for homogeneous nucleation is greater compared to heterogeneous nucleation and hence the heterogeneous nucleation is difficult.
(d) None of these

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b)The activation energy for heterogeneous nucleation is less compared to homogenous nucleation and hence the homogenous nucleation is difficult.
${ }^{5)}$ Q5 The number of unit cells in $1 \mathrm{~m}^{3}$ of FCC nickel $\left(\mathrm{r}_{\mathrm{Ni}}=1.243 \AA\right)$ will be:
(a) $2.3^{\prime} 10^{28}$
(b) $4.2^{\prime} 10^{28}$
(c) $6.5^{\prime} 10^{28}$
(d) $20^{\prime} 10^{28}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(a) $2.3^{\prime} 10^{28}$
6)

No, the answer is incorrect.
Score: 0
Accepted Answers:

A

7) Q7 The surface energy of iron (BCC) when the external surface is of $\{100\}$ type is 1 point given by: $\left(\right.$ Given: $\mathrm{a}_{\mathrm{Fe}}=2.87 \AA$, bond energy of Fe (per bond) $=21 \mathrm{KJ} / \mathrm{mole}$ of bond).
(a) $0.9470 \mathrm{~J} / \mathrm{m}^{2}$
(b) $0.8465 \mathrm{~J} / \mathrm{m}^{2}$
(c) $0.2540 \mathrm{~J} / \mathrm{m}^{2}$
(d) $0.6687 \mathrm{~J} / \mathrm{m}^{2}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b) $0.8465 \mathrm{~J} / \mathrm{m}^{2}$
8) Q8 In liquid to solid transformation, an interface has been formed 1 point between solid nuclei and surrounding liquid. The three plots shown below depicts the scenario corresponding to the variation of H, S and G with distance. Identify the correct statement for plots.
(a) Plot (a) corresponds to H vs. distance plot, plot (b) corresponds to G vs. distance plot and plot (c) corresponds to $-\mathrm{T}_{\mathrm{m}} \mathrm{S}$ vs. distance plot.
(b) Plot (b) corresponds to H vs. distance plot, plot (a) corresponds to G vs. distance plot and plot (c) corresponds to $-T_{m} S$ vs. distance plot.
(c) Plot (c) corresponds to H vs. distance plot, plot (a) corresponds to G vs. distance plot and plot (b) corresponds to $-T_{m}$ S vs. distance plot
(d) None of these.

No, the answer is incorrect.
Score: 0
Accepted Answers:
(a) Plot (a) corresponds to H vs. distance plot, plot (b) corresponds to G vs. distance plot and plot (c) corresponds to $T_{m} S$ vs. distance plot.
${ }^{9)}$ Q9 Aluminium has an FCC crystal structure. Its density is $2700 \mathrm{~kg} / \mathrm{m}^{3}$. The unit cell $\quad 1$ point dimensions (a) and the atomic diameter ($\mathrm{d}=2 \mathrm{r}$) are: (Given: molar mass of aluminium=26.98 $\mathrm{g} / \mathrm{mol})$. Mark the closest matching answer.
(a) $3.05 \AA$ And $3.86 \AA$ A , respectively.
(b) $2.05 \AA$ and $2.86 \AA$, respectively.
(c) $4.05 \AA$ and $2.86 \AA$, respectively.
(d) $2.05 \AA$ and $1.86 \AA$, respectively.

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c) $4.05 \AA$ and $2.86 ~ A$, respectively.
10)Q10 In FCC unit cell, the number of atoms per unit area of the (110) plane are given by:

No, the answer is incorrect.
Score: 0
Accepted Answers:
A

Previous Page

