	reviewer2@nptel.iitm	
ourses » Fundame	entals of Material Processing - I	
	Announcements Course Ask a Question Progres	S
Jnit 5 - we	ek 4	
Course outline	Assignment-4	
How to access	The due date for submitting this assignment has passed. Due on 2017-08-20, 23:59 As per our records you have not submitted this assignment.	
the portal	1) Scheil's equation is valid under following assumption(s):	ро
Week 1	A. No solid diffusion B. Complete homogenization in liquid	
Week 2	C. Constant partition ratio K	
week 3	All A, B and C are true	
week 4	 A and B are true, but C is not true Only A is true 	
O Lecture 16 -	Only C is true	
Complete and Limited Liquid Diffusion	No, the answer is incorrect. Score: 0	
 Lecture 17 - Mixed Mode 	Accepted Answers: All A, B and C are true	
Solidification	 2) For the condition of no solid diffusion, limited liquid diffusion, which of the following are true? A. Composition of the initial solid formed is given by KC₀ 	ро
Mixed Mode Solidification	B. If crystal is sufficiently long and hence steady state can be assumed, then composition of	soli
and Zone Refining	in steady state region must be C ₀ C. Composition of liquid at the interface in steady state regime is C ₀ /K	
Lecture 19 -	D. Overall composition of the solid formed under this condition is C_0	
Zone Refining	All A, B,C and D are true	
continued	 Air A, B,C and D are file A and B are true, but C and D are false 	
 Lecture 20 - Cellular 	A, B and C are true, but D is false	
Solidification of Single Phase	Only A is true	
Alloy	No, the answer is incorrect.	
O Quiz :	Score: 0	
Assignment-4	Accepted Answers:	
 Assignment 4 Solution 	All A, B,C and D are true	
week 5	3) The steady state region of the case of 'no solid diffusion, limited liquid diffusion' can be expressed by following differential equation:	poi
week 6	What boundary conditions are needed to solve this differential equation? A. $C_L(C_i) = C_0$ at x = ∞	
week 7	B. $C_L(C_i) = C_0/K$ at x = 0	
week 8	C. $C_S = C_0$ (for all x in steady state regime)	
	Only A is needed	

Fundamentals of Material Processing - I - - Unit 5 - week 4

All A, B and C are needed

B and C are needed, but not A

No, the answer is incorrect. Score: 0

Accepted Answers:

All A, B and C are needed

4) Regarding mixed mode of solidification, which one of the following is correct statement?

- Solid diffusion with some convection in liquid
- No Solid diffusion with some convection in liquid
- Solid diffusion without any convection in liquid
- No Solid diffusion with significant convection in liquid

No, the answer is incorrect. Score: 0

Accepted Answers: No Solid diffusion with some convection in liquid

5) For the mixed mode solidification, which of the boundary conditions are needed?

- A. $C_{L}(C_{i}) = C_{\infty} \text{ at } x = \delta$ B. $C_{L}(C_{i}) = C_{L}^{*} = C_{S}^{*}/K \text{ at } x = 0$
- C. $C_L(C_i) = C_0 \text{ at } x = \infty$
- A and B are needed, not C
- All A, B and C are needed
- Neither of A, B and C are needed
- Only C is needed, not A and B

No, the answer is incorrect. Score: 0

Accepted Answers: A and B are needed, not C

6) What is the expression of effective partition between solid and alloy for mixed mode of **1** point solidification?

No, the answer is incorrect. Score: 0

Accepted Answers:

7) Write down the expression for effective partition for the case of 'no solid diffusion, complete **1** point homogenization in liquid'?

- Keffective = -K
- Keffective = K
- Keffective = -1/K
- Keffective = 1/K

No, the answer is incorrect. Score: 0 Accepted Answers:

 $K_{effective} = K$

8) The objective of zone refining is to

1 point

f y D in

increase the solute concentration in the solid

Fundamentals of Material Processing - I - - Unit 5 - week 4

- decrease the solute concentration in the solid
- increase the solute concentration in the liquid
- decrease the solute concentration in the liquid

No, the answer is incorrect.

Score: 0

Accepted Answers:

decrease the solute concentration in the solid

- 9) In single phase alloys, which of the following is true?
 - A. Random fluctuations cause growth of protrusions on the solid-liquid interface
 - B. If the thermal gradient in the liquid is positive, protrusions melt and vanish
 - C. If the thermal gradient in the liquid is negative, planar interface of growth is observed
 - A and B are true, not C
 - All A, B and C are true
 - Only C is true, not A and B
 - A and C are true, not B

No, the answer is incorrect. Score: 0

Accepted Answers: A and B are true, not C

10For constitutional supercooling, slope of actual thermal gradient should be always_____ 1 point

- Iower than that of critical thermal gradient
- greater than that of critical thermal gradient
- equal to that of critical thermal gradient
- does not depend on actual thermal gradient

No, the answer is incorrect. Score: 0

Accepted Answers: lower than that of critical thermal gradient

Previous Page

End

1 pc f

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

 NPTEL
 National Programme on Technology Enhanced Learning

Funded by

In association with

Government of India Ministry of Human Resource Development

Powered by

