| ourses » Introducti                                                                                                                                                                                                  | on to Materials Sc                                                                                                                                                                                                                                                                                   | ience and En                               | aineerina                                |                    |                     |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------|---------------------|------------------|
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                      |                                            |                                          |                    |                     |                  |
| <b>Jnit 15 - W</b>                                                                                                                                                                                                   | eek 12 -                                                                                                                                                                                                                                                                                             | Announceme                                 | ents <b>Course</b>                       | Ask a Que          | stion Progr         | ess FAQ          |
| lechanica                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                      | our of N                                   | laterials                                | III + Fra          | acture              |                  |
| Register for<br>Certification exam                                                                                                                                                                                   | Assigni                                                                                                                                                                                                                                                                                              | nent 12                                    |                                          |                    |                     |                  |
| Course<br>outline                                                                                                                                                                                                    | The due date fo                                                                                                                                                                                                                                                                                      | or submitting th                           | nis assignment has<br>not submitted this | -                  | on 2019-04-2        | 4, 23:59 IST     |
| How to access<br>the portal                                                                                                                                                                                          | 1) Choose the c                                                                                                                                                                                                                                                                                      |                                            |                                          |                    |                     | 1 poi            |
| Supplementary<br>Materials                                                                                                                                                                                           | Engineering stress is roughly equal to the true stress at lower strains but the difference increases with increasing strain                                                                                                                                                                          |                                            |                                          |                    |                     |                  |
| Week 1 -<br>Crystallography<br>I                                                                                                                                                                                     | <ul> <li>Engineering stress is significantly different from true stress at lower strains and the difference increases with increasing strain</li> <li>Engineering stress is significantly different from true stress at lower strains but the difference decreases with increasing strain</li> </ul> |                                            |                                          |                    |                     |                  |
| Week 2 -<br>Crystallography                                                                                                                                                                                          | No, the answe                                                                                                                                                                                                                                                                                        |                                            | ughly equal to the t                     | rue stress at all  | strain levels       |                  |
|                                                                                                                                                                                                                      | 00010.0                                                                                                                                                                                                                                                                                              | wers:                                      | aual to the true stre                    | ess at lower strai | ins but the differe | ence increases w |
| Solids I<br>Week 3 -<br>Structure of                                                                                                                                                                                 | Accepted Ans<br>Engineering str<br>increasing stra                                                                                                                                                                                                                                                   | in                                         |                                          |                    |                     |                  |
| Solids I<br>Week 3 -<br>Structure of<br>Solids II<br>Week 4 -                                                                                                                                                        | Accepted Ans<br>Engineering str<br>increasing stra                                                                                                                                                                                                                                                   | in                                         | als would creep sign                     | nificantly at 100° | °C?                 | 1 poi            |
| Solids I<br>Week 3 -<br>Structure of<br>Solids II<br>Week 4 -<br>Structure of                                                                                                                                        | Accepted Ans<br>Engineering str<br>increasing stra<br>2) Which of the<br>Materia                                                                                                                                                                                                                     | in<br>following materia                    |                                          | nificantly at 100° | °C?<br>Copper       | 1 poin           |
| Solids I<br>Week 3 -<br>Structure of<br>Solids II<br>Week 4 -<br>Structure of<br>Solids III<br>Week 5 - Defects<br>in Crystalline                                                                                    | Accepted Ans<br>Engineering str<br>increasing stra<br>2) Which of the                                                                                                                                                                                                                                | in<br>following materia                    | als would creep sigr                     | -                  |                     | -1               |
| II + Structure of<br>Solids I<br>Week 3 -<br>Structure of<br>Solids II<br>Week 4 -<br>Structure of<br>Solids III<br>Week 5 - Defects<br>in Crystalline<br>Solids I<br>Week 6 - Defects<br>in Crystalline<br>Solids I | Accepted Ans<br>Engineering str<br>increasing stra<br>2) Which of the<br>Materia<br>Melting                                                                                                                                                                                                          | in<br>following materia<br>I Tin<br>C) 232 | als would creep sign                     | Zinc               | Copper              | Iron             |





## Introduction to Materials Science and Engineer...

| Week 10 - Phase<br>Transformations<br>II + Mechanical<br>Behaviour of<br>Materials I | <ul> <li>the steady state creep rate is lower and also the creep life will be lower</li> <li>the steady state creep rate is lower and the creep life will be higher</li> <li>the steady state creep rate is higher and also the creep life will be higher</li> <li>No, the answer is incorrect.</li> </ul> |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 11 -<br>Mechanical<br>Behaviour of<br>Materials II                              | Score: 0 Accepted Answers: the steady state creep rate is lower and the creep life will be higher                                                                                                                                                                                                          |
| Week 12 -<br>Mechanical<br>Behaviour of<br>Materials III +<br>Fracture               | 4) Creep can occur by P: diffusion Q: grain boundary sliding R: cross-slip of dislocations P alone                                                                                                                                                                                                         |
| Week-12<br>Overview                                                                  | P and Q                                                                                                                                                                                                                                                                                                    |
| 12.1 True<br>stress and True<br>Strain                                               | <ul> <li>P and R</li> <li>P, Q and R</li> </ul>                                                                                                                                                                                                                                                            |
| 0 12.2 Creep                                                                         | No, the answer is incorrect.<br>Score: 0                                                                                                                                                                                                                                                                   |
| <ul> <li>12.3 Effect of<br/>Stress and<br/>Temperature on<br/>Creep</li> </ul>       | Accepted Answers:<br>P, Q and R                                                                                                                                                                                                                                                                            |
| 12.4 Creep<br>Mechanisms                                                             | 5) The temperature required to initiate creep in a material when the stress is <b>1 poin</b> decreased.                                                                                                                                                                                                    |
| 0 12.5<br>Composites                                                                 | <ul> <li>increases</li> <li>decreases</li> </ul>                                                                                                                                                                                                                                                           |
| 12.6 Isostrain<br>Modulus                                                            | remains the same                                                                                                                                                                                                                                                                                           |
| 12.7 Isostress<br>Modulus                                                            | No, the answer is incorrect.<br>Score: 0                                                                                                                                                                                                                                                                   |
| 0 12.8 Fracture                                                                      | Accepted Answers:<br>increases                                                                                                                                                                                                                                                                             |
| 12.9 Ductile<br>and Brittle<br>Fracture                                              | 6) A continuous aligned fiber composite is made of E-glass fibres and an epoxy resin matrix. <b>1 poin</b><br>The Young's modulus (in GPa) of the composite along the direction of the fibers is found to be 40 GPa                                                                                        |
| 12.10 Role of<br>Crack Size                                                          | The Young's modulus of E-glass fiber = 85 GPa and that of epoxy resin = 12 GPa. Find the approximate volume fraction of the fibers.                                                                                                                                                                        |
| 12.11 Griffith's<br>Criterion                                                        | 76                                                                                                                                                                                                                                                                                                         |
| 12.12 Stress<br>Concentration                                                        | <ul> <li>□ 38</li> <li>□ 22</li> </ul>                                                                                                                                                                                                                                                                     |
| 12.13 Ductile to<br>Brittle<br>Transition                                            | A4 No, the answer is incorrect.                                                                                                                                                                                                                                                                            |
| 12.14     Enhancing     Fracture     Resistance                                      | Score: 0<br>Accepted Answers:<br>38                                                                                                                                                                                                                                                                        |
| <ul> <li>12.15</li> <li>Toughening of<br/>Glass:</li> <li>Tempering</li> </ul>       | <ul> <li>7) The significant features of a brittle fracture are and</li> <li>1 point</li> <li>I low energy absorption, significant plastic deformation</li> <li>high energy absorption, significant plastic deformation</li> </ul>                                                                          |
| 0 12.16<br>Toughening of<br>Glass:                                                   | <ul> <li>Inglitenergy absorption, significant plastic deformation</li> <li>Iow energy absorption, no significant plastic deformation</li> <li>high energy absorption, no significant plastic deformation</li> </ul>                                                                                        |

## Introduction to Materials Science and Engineer...

| Ion-Exchange                            | No, the answer is incorrect.                                                                                                                                           |           |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| 12.17 Fatigue                           | Score: 0                                                                                                                                                               |           |  |  |  |  |
| 0 12.18<br>Sub-critical<br>Crack Growth | Accepted Answers:<br>low energy absorption, no significant plastic deformation<br>8) A higher surface energy the formation/growth of cracks as the formation/growth of | 1 point   |  |  |  |  |
| Quiz :<br>Assignment 12                 | a crack creates new surfaces which the total energy of the system.                                                                                                     |           |  |  |  |  |
| Interactive                             | resists, increases                                                                                                                                                     |           |  |  |  |  |
| Session                                 | favours, increases                                                                                                                                                     |           |  |  |  |  |
|                                         | <ul> <li>favours, decreases</li> <li>resists, decreases</li> </ul>                                                                                                     | <u>~~</u> |  |  |  |  |
|                                         | No, the answer is incorrect.                                                                                                                                           | 2         |  |  |  |  |
|                                         | Score: 0                                                                                                                                                               | 2         |  |  |  |  |
|                                         | Accepted Answers:                                                                                                                                                      |           |  |  |  |  |
|                                         | <ul><li>9) During fatigue the crack grows due to</li></ul>                                                                                                             | 1 point   |  |  |  |  |
|                                         |                                                                                                                                                                        | 1 point   |  |  |  |  |
|                                         | <ul> <li>constant stress</li> <li>cyclic stress</li> </ul>                                                                                                             |           |  |  |  |  |
|                                         | <ul> <li>Opened areas</li> <li>monotonically decresing stress</li> </ul>                                                                                               |           |  |  |  |  |
|                                         | monotonically increasing load                                                                                                                                          |           |  |  |  |  |
|                                         | No, the answer is incorrect.                                                                                                                                           |           |  |  |  |  |
|                                         | Score: 0 Accepted Answers: cyclic stress                                                                                                                               |           |  |  |  |  |
|                                         | 10)Tempering of glass enhances fracture strength of glass by introducing                                                                                               | 1 point   |  |  |  |  |
|                                         | residual compressive stresses in the surface but not inside                                                                                                            |           |  |  |  |  |
|                                         | residual tensile stress in the surface but not inside                                                                                                                  |           |  |  |  |  |
|                                         | residual compressive stress inside but not on the surface                                                                                                              |           |  |  |  |  |
|                                         | residual tensile stress both on surface and inside                                                                                                                     |           |  |  |  |  |
|                                         | No, the answer is incorrect.<br>Score: 0                                                                                                                               |           |  |  |  |  |
|                                         | Accepted Answers:<br>residual compressive stresses in the surface but not inside                                                                                       |           |  |  |  |  |
|                                         | Previous Page End                                                                                                                                                      | 1         |  |  |  |  |
|                                         |                                                                                                                                                                        |           |  |  |  |  |

| 2 |
|---|
| R |
| ß |
| R |
| R |