Χ reviewer4@nptel.iitm.ac.in ▼ Courses » Introduction to Materials Science and Engineering Announcements Course Ask a Question **Progress** FAQ **Unit 14 - Week 11 -Mechanical Behaviour of Materials II** Register for **Assignment 11 Certification exam** The due date for submitting this assignment has passed. Course As per our records you have not submitted this Due on 2019-04-17, 23:59 IST. outline assignment. 1) A polycrystalline material, with an average grain diameter of 24 μ m has a yield strength of 1 point How to access the portal 600 MPa. After annealing, the material is found to have a yield strength of 450 MPa. What is the average grain diameter (in μ m) of the annealed sample? Given: σ_{∞} = 100 MPa Supplementary Materials Week 1 -Crystallography Week 2 -No, the answer is incorrect. Crystallography II + Structure of Score: 0 Solids I **Accepted Answers:** 49 Week 3 -Structure of 2) At the peak aged condition, the alloy will have 1 point Solids II large number of fine precipitates Week 4 large number of coarse precipitates Structure of Solids III small number of fine precipitates small number of coarse precipitates Week 5 - Defects in Crystalline No, the answer is incorrect. Solids I Score: 0 Week 6 - Defects **Accepted Answers:** in Crystalline large number of fine precipitates Solids II 3) Choose the correct statement regarding the mechanism of plastic deformation: 1 point

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

P: All the interatomic bonds break and form again at once

A project of

Week 7 - Phase

Diagrams I

Q: The interatomic bonds break and form again locally. All the bonds do not break and form together.

Funded by

Week 10 - Phase Transformations II + Mechanical Behaviour of	P is assumed to obtain the theoretical CRSS. This is also observed experimentally. No, the answer is incorrect. Score: 0	
Materials I	Accepted Answers:	
Week 11 - Mechanical Behaviour of Materials II	P is assumed to obtain the theoretical CRSS. This is not observed experimentally because in returne. 4) P: Dislocations are the reason why the real crystals have strengths lower than the	ality Q is
	theoretical CRSS.	
Week 11 Overview	Q: On increasing the dislocation density, the crystal keeps getting weaker. Choose the statement:	
11.1 CRSS: Theory vs experiment	Both P and Q are true Both P and Q are false	R
11.2 Why is		
experimental CRSS less than	P is true and Q is false P is false and Q is true	Ç.
theoretical	No, the answer is incorrect.	
CRSS?	Score: 0	
11.3 Strengthening	Accepted Answers:	
mechanisms	P is true and Q is false	
11.4 Dislocation density	5) What happens to a polycrystalline material upon plastic deformation?	ooint
0 11.5	All the dislocations come out of the material and the strength reaches the theoretical CRS	SS
Frank-Read source	The dislocation density reduces but the dislocations do not disappear completely. This re in strengthening of the material	
11.6 Strain hardening	The dislocations get entangled and they multiply to increase the dislocation density. This hinders the motion of dislocations and increases the strength of the material	
11.7 Dislocation interaction	The dislocation density increases leading to weakening of the material	
leading to strain hardening I	No, the answer is incorrect. Score: 0	
11.8 Dislocation	Accepted Answers:	
interaction leading to strain hardening II	The dislocations get entangled and they multiply to increase the dislocation density. This hinders of dislocations and increases the strength of the material	s the mo
11.9 Solid	6) During grain growth,	ooint
solution hardening	i) the total grain boundary area, ii) the total number of grains	John
11.10 Grain		
size hardening	i) increases ii) decreases	
11.11 Age hardening I	i) decreases ii) decreases i) decreases ii) increases	
11.12 Age hardening II	i) increases ii) increases	
0 11.13	No, the answer is incorrect.	
Metastable	Score: 0	
precipitates	Accepted Answers:	
11.14 Annealing of	i) decreases ii) decreases	
cold-worked	7) A dislocation with Burgers vector b ($ b $ = 2.56 Å) moving on its slip plane gets pinned by two 1 μ	
metals	precipitates separated by a distance of 20 μm. If the shear modulus of the crystal is 45 GPa, find the	ne
11.15 Recovery	stress required (τ_1) to bow the pinned dislocation into a semi-circular shape. Also find the stress required (τ_2) if the separation between the precipitates is halved.	
11.16 Recrystallisation	required (12) if the separation between the precipitates is naived.	

 $au_1 = 5.76$ MPa and $au_2 = 11.52$ MPa 11.17 Grain growth $au_1=11.52$ MPa and $au_2=5.76\,$ MPa Quiz: Assignment 11 $au_1 = 576$ kPa and $au_2 = 1.152$ MPa Week 12 -Mechanical Behaviour of $au_1=1.152$ GPa and $au_2=576$ kPa Materials III + Fracture No, the answer is incorrect. Score: 0 Interactive **Accepted Answers:** Session $au_1 = 576$ kPa and $au_2 = 1.152$ MPa They will combine to form a sessile dislocation with $\mathbf{b} = \frac{a}{2}[12\overline{1}]$ They will combine to form a glissile dislocation with $\mathbf{b} = \frac{a}{2}[12\overline{1}]$ They will not combine

Previous Page

End