

4) For a one-dimensional system, which of the following boundary conditions is not possible? **1** point

$$c_l = 0; c_r = 0;$$

 $(\frac{dc}{dx})_l = 0; (\frac{dc}{dx})_r = 0;$
 $c_l = 0; (\frac{dc}{dx})_l = 0$ and $c_r = 0; (\frac{dc}{dx})_r = 0$
 $(c + \frac{dc}{dx})_l = 0$ and $(c + \frac{dc}{dx})_r = 0$

No, the answer is incorrect.

Score: 0

Accepted Answers: $c_l=0; (rac{dc}{dx})_l=0 \quad ext{and} \quad c_r=0; (rac{dc}{dx})_r=0$

5) For solving the diffusion equation using implicit method and Dirichlet boundary conditions, **1** *point* the matrix used during the time integration would be:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -\alpha & (1+\alpha) & -\alpha & 0 & 0 \\ 0 & -\alpha & (1+\alpha) & -\alpha & 0 \\ 0 & 0 & -\alpha & (1+\alpha) & -\alpha \\ 0 & 0 & 0 & -\alpha & (1+\alpha) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -\alpha & (1+\alpha) & -\alpha & 0 & 0 \\ 0 & -\alpha & (1+\alpha) & -\alpha & 0 \\ 0 & 0 & -\alpha & (1+\alpha) & -\alpha \\ 0 & 0 & 0 & -2\alpha & (1+\alpha) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2\alpha & 0 & 0 & 0 \\ -\alpha & (1+2\alpha) & -\alpha & 0 & 0 \\ 0 & -\alpha & (1+2\alpha) & -\alpha & 0 \\ 0 & 0 & 0 & -2\alpha & (1+2\alpha) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & (1+2\alpha) & -\alpha \\ 0 & 0 & 0 & 0 \\ 0 & -\alpha & (1+2\alpha) & -\alpha & 0 \\ 0 & 0 & -\alpha & (1+2\alpha) & -\alpha \\ 0 & 0 & 0 & -2\alpha & (1+2\alpha) \end{bmatrix}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:					
	1	0	0	0	0
	-lpha	(1+2lpha)	-lpha	0	0
A =	0	$egin{array}{c} 0 \ (1+2lpha) \ -lpha \ 0 \ \end{array}$	(1+2lpha)	-lpha	0
	0	0	$-\alpha$	(1+2lpha)	-lpha
	0	0	0	-2lpha	(1+2lpha)

6) Which of the following gives the second derivative of a composition using Central difference **1** *point* scheme?

$$c^{"} = \frac{c_{i-1}-2c_i+c_{i+1}}{(\Delta x)^2}$$

$$c^{"} = \frac{c_{i-1}+2c_i+c_{i+1}}{(\Delta x)^2}$$

$$c^{"} = \frac{c_{i-1}-2c_i-c_{i+1}}{(\Delta x)^2}$$

$$c^{"} = \frac{c_{i-1}+2c_i+c_{i+1}}{\Delta x}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

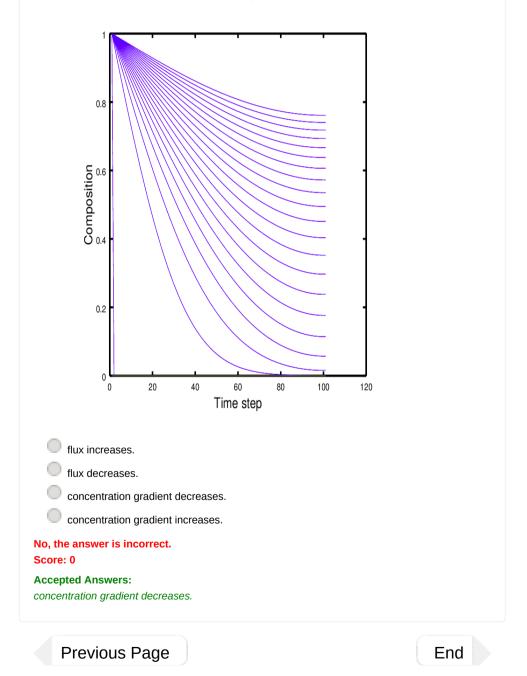
$$c "= rac{c_{i-1}-2c_i+c_{i+1}}{(\Delta x)^2}$$

7) Which of the following expressions is the implicit implementation of the non-steady state **1** *point* diffusion equation?

$$\frac{c_i^{t+\Delta t} - c_i^t}{\Delta t} = \frac{D}{(\Delta x)^2} \left[c_{i-1}^{t+\Delta t} + c_{i+1}^{t+\Delta t} + 2c_i^{t+\Delta t} \right]$$

Phase field modelling: the materials science, m...

$$\begin{array}{l} \frac{c_{i}^{t+\Delta t}-c_{i}^{t}}{\Delta t}=\frac{D}{\left(\Delta x\right)^{2}}\left[c_{i-1}^{t+\Delta t}+c_{i+1}^{t+\Delta t}-2c_{i}^{t+\Delta t}\right]\\ \\ \hline \\ \frac{c_{i}^{t+\Delta t}+c_{i}^{t}}{\Delta t}=\frac{D}{\left(\Delta x\right)^{2}}\left[c_{i-1}^{t}+c_{i+1}^{t}-2c_{i}^{t}\right]\\ \\ \hline \\ \frac{c_{i}^{t+\Delta t}-c_{i}^{t}}{\Delta t}=\frac{D}{\left(\Delta x\right)^{2}}\left[c_{i-1}^{t}+c_{i+1}^{t}+2c_{i}^{t}\right]\end{array}$$


No, the answer is incorrect.

Score: 0

Accepted Answers:
$$rac{c_i^{t+\Delta t}-c_i^t}{\Delta t}=rac{D}{\left(\Delta x
ight)^2}\left[c_{i-1}^{t+\Delta t}+c_{i+1}^{t+\Delta t}-2c_i^{t+\Delta t}
ight]$$

1 point

8) Consider the carburization of steel where the boundary conditions are c(t) = 1 at x=0 and $(\frac{\partial c}{\partial x})_t = 0$ at x=L. The gap between the composition profile with increasing time decreases as shown in the figure because

Phase field modelling: the materials science, m...