reviewer3@nptel.iitm.ac.in ▼

Courses » Phase field modelling: the materials science, mathematics and computational aspects

Announcements Course Ask a Question Progress Mentor

FAQ

Unit 5 - Week 4

© 2014 NPTEL -

Privacy & Terms

No, the answer is incorrect.	
Score: 0	
Accepted Answers: c = x.*y;	
7) Which of the following is an option of the $fminbnd$ function which will act as an end criteria for iterations while computing the minima?	1 point
eval	
O gca	
O IterEnd	
O TOIX	
No, the answer is incorrect. Score: 0	
Accepted Answers: ToIX	
8) Which of the following is the non-dimensionalized diffusion equation (where $ au_o$ and l_o are the characteristic time and characteristic length respectively)?	1 point
$egin{align} rac{\partial c}{\partial t} &= rac{D au_o^2}{l_o} \; rac{\partial^2 c}{\partial x^2} \ rac{\partial c}{\partial t} &= rac{D au_o}{l_o^2} \; rac{\partial^2 c}{\partial x^2} \ \end{pmatrix}$	
$egin{array}{cccc} rac{\partial t}{\partial t} & l_o^2 & \partial x^2 \ rac{\partial c}{\partial t} & = rac{D l_o}{ au_o^2} & rac{\partial^2 c}{\partial x^2} \end{array}$	
$rac{\partial t}{\partial t} = rac{ au_o^2}{ au_o^2} = rac{\partial x^2}{ au_o^2}$	
$rac{\partial c}{\partial t} = rac{D au_o^2}{l_o^2} \; rac{\partial^2 c}{\partial x^2}$	
No, the answer is incorrect. Score: 0	
Accepted Answers: $rac{\partial c}{\partial t} = rac{D au_o}{l_o^2} rac{\partial^2 c}{\partial x^2}$	
9) Which of the following algorithms is used by the <i>fminsearch</i> function in GNU Octave? (Hint: Use help command)	1 point
Golden section method	
Conjugate gradient method	
Nelder-Mead method	
None of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers: Nelder-Mead method	