Courses » Phase field modelling: the materials science, mathematics and computational aspects

Announcements
Course
Ask a Question
Progress
Mentor

FAQ

Unit 5 - Week 4

Course outline

How to access
the portal ?

Week-1

Week 2

Week 3
Week 4

Assignment 4

The due date for submitting this assignment has passed. Due on 2018-09-05, 23:59 IST.
As per our records you have not submitted this assignment.

1) Using GNU Octave, find out which of the following polynomials represents the given

1 point plot in the x-range of -1 to 1 :

Module 5
Lecture 24 :
GNU Octave : script mode

$$
\begin{aligned}
& x^{3}\left(10-15 x+6 x^{2}\right) \\
& x^{3}\left(10+15 x+6 x^{2}\right) \\
& x^{3}\left(10-15 x-6 x^{2}\right) \\
& x^{3}\left(10+15 x^{2}+6 x\right)
\end{aligned}
$$

Phase field modelling: the materials science, m...-0.37907 and 0.936810.37907 and -0.936810.97787 and -0.20091

Module 6 -
Lecture 26 :
Regular solution using octave

- -0.97787 and 0.20091

No, the answer is incorrect.
Score: 0
Accepted Answers:
-0.37907 and 0.93681
3) With increase in temperature, the relative contribution to the enthalpy term in the equation

1 point of $\Delta G_{m i x}$ of a regular solution :
(Hint: $\Delta G_{m i x}=\Omega x(1-x)+R T(x \ln (x)+(1-x) \ln (1-x))$
Module $6-$
Lecture $27:$
Constructing phase diagram

Module 6 -
Lecture 28 :
Plotting spinodal

Module 7 -
Lecture 29 :
Non-dimensionalisation
of diffusion
equation

Module 7 -
Lecture 30 :
Diffusion and
Fourier law of heat conductionincreasesdecreasesdoes not change
increases and then decreases
No, the answer is incorrect.
Score: 0
Accepted Answers:
decreases
4) Which of the following shows the correct $\Delta G \mathrm{v} / \mathrm{s} x$ plot corresponding to the temperature at the $\mathbf{1}$ point beginning of phase separation (i.e. critical temperature)

Download Videos

Feedback

Quiz:
Assignment 4

Solution assignment 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

No, the answer is incorrect.
Score: 0
Accepted Answers:

5) Which of the following codes calculates and plots $\Delta G_{\operatorname{mix}}$ for an ideal solution:

1 point

```
x = 0.001:0.001:0.999;
deltaG = (x.*ln(x).+(1.-x).*ln(1.-x));
```

plot (x,deltaG);
alpha = 0.1;
x = 0.001:0.001:0.999;
deltaG $=$ alpha.*x.*(1.-x).+(x.*log(x).+ (1.-x).*log(1.-x));
plot(x,deltaG);
alpha = 0.1;
$x=0.001: 0.001: 0.999 ;$
deltaG = alpha.*x.*(1.-x).+(x.*ln(x).+(1.-x).*ln(1.-x));
plot(x,deltaG);
$x=0.001: 0.001: 0.999 ;$
deltaG $=x . * \log (x) .+(1 .-x) . * \log (1 .-x)$;
plot(x,deltaG);
No, the answer is incorrect.
Score: 0
Accepted Answers:
$x=0.001: 0.001: 0.999$;
deltaG $=x . * \log (x) .+(1 .-x) . * \log (1 .-x)$;
plot(x,deltaG),
6) Let $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $y=\left[\begin{array}{lll}6 & 7 & 8\end{array}\right]$. Which of the following commands in GNU1 potiatve give the element wise product of the two vectors?
$10 \mathrm{c}=\mathrm{x}^{*} \mathrm{y}$;
for $\mathrm{i}=1: 3$
for $\mathrm{j}=1$: 3
$\mathrm{c}(\mathrm{i}, \mathrm{j})=\mathrm{x}(\mathrm{i}) * y(\mathrm{j})$;
endfor

```
endfor
    c= x.* y;
```

```
\[
c=x^{\star \star} y ;
\]
```

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
c=x .{ }^{*} y ;
$$

7) Which of the following is an option of the fminbnd function which will act as an end

1 point criteria for iterations while computing the minima?

```eval
```

```IterEnd
```

```TolX
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
ToIX
8) Which of the following is the non-dimensionalized diffusion equation (where τ_{o} and l_{o} are the

1 point characteristic time and characteristic length respectively)?

$$
\begin{aligned}
& \frac{\partial c}{\partial t}=\frac{D \tau_{o}^{2}}{l_{o}} \frac{\partial^{2} c}{\partial x^{2}} \\
& \frac{\partial c}{\partial t}=\frac{D \tau_{o}}{l_{o}^{2}} \frac{\partial^{2} c}{\partial x^{2}} \\
& \frac{\partial c}{\partial t}=\frac{D l_{o}}{\tau_{o}^{2}} \frac{\partial^{2} c}{\partial x^{2}} \\
& \frac{\partial c}{\partial t}=\frac{D \tau_{o}^{2}}{l_{o}^{2}} \frac{\partial^{2} c}{\partial x^{2}}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\frac{\partial c}{\partial t}=\frac{D \tau_{o}}{l_{o}^{2}} \frac{\partial^{2} c}{\partial x^{2}}$
9) Which of the following algorithms is used by the fminsearch function in GNU Octave? (Hint: Use help command)Golden section methodConjugate gradient methodNelder-Mead methodNone of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
Nelder-Mead method

Previous Page

