

Phase field modelling: the materials science, m...

Download Videos	ce De
Weekly Feedback	
Quiz : Assignment 3	
Solution Assignment 3	
Week 4	
Week 5	
Week 6	
Week 7	
Week 8	
Week 9	
Week 10	
Week 11	
Week 12	

n = 17; lognfact = n * ln(n) - n; disp(lognfact); n = 17; $lognfact = n * log(n) - n^{2};$ disp(lognfact); n = 17; lognfact = n * log(n) - n;disp(lognfact);

 $egin{aligned} n = 17; \ lognfact = n * ln(n) + n; \ disp(lognfact); \end{aligned}$

No, the answer is incorrect. Score: 0 Accepted Answers: n = 17;lognfact = n * log(n) - n;disp(lognfact);

⁴⁾ The expression for mobility (M) in terms of diffusivity (D) is (where G'' is $\frac{d^2G}{dc^2}$ and N_v is the **1** point number of atoms per unit volume):

$$M = \frac{DG''}{N_V}$$
$$M = \frac{DN_v}{G''}$$
$$M = -\frac{DN_v}{G''}$$
$$M = -\frac{DG''}{N_v}$$

No, the answer is incorrect. Score: 0

Accepted Answers: $M = \frac{DN_v}{G^{"}}$

5) The mobility (M) in terms of compositions (c, 1 - c) and velocities (v_1, v_2) of atoms in a **1** point binary system is:

$$M = c(1-c)\{(1-c)v_2 + cv_1\}$$

 $M = -c(1-c)\{(1-c)v_1 + cv_2\}$
 $M = c(1-c)\{(1-c)v_1 + cv_2\}$

Phase field modelling: the materials science, m...

No, the answer is incorrect. Score: 0	
Accepted Answers:	
$M = c(1-c)\{(1-c)v_2 + cv_1\}$	
6) In GNU Octave, what does the following line of code return as output?	1 poin
1 logspace(3,4,100)	
$log_{2}100$ and $log_{4}100$.	
a row vector that gives 100 elements logarithmically spaced between 3 and 4.	
a row vector that gives 100 elements logarithmically spaced between 10^3 and $10^4.$	
None of the above.	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
a row vector that gives 100 elements logarithmically spaced between $10^{ m s}$ and $10^{ m 4}.$	
7) There exists a lower limit to the wavelength of the composition fluctuation when a system undergoes spinodal decomposition because of:	1 poir
Gibbs free energy.	
Interfacial free energy.	
Bulk free energy.	
All of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
Interfacial free energy.	
8) Interfacial free energy of a system is	1 poir
🔍 zero.	
Always negative.	
Always positive.	
Either positive or negative.	
No, the answer is incorrect. Score: 0	
Accepted Answers: Always positive.	
9) Which of the following is the Cahn-Hilliard equation? κ denotes the gradient energy term, all other symbols have usual meaning)	1 poir

 \bigcirc

Phase field modelling: the materials science, m...

 $\frac{\partial c}{\partial t} = \frac{M}{N_v} \left[G " \frac{\partial^2 c}{\partial x^2} - 2\kappa \frac{\partial^4 c}{\partial x^4} \right]$ $\frac{\partial c}{\partial t} = \frac{M}{N_v} \left[G " \frac{\partial c}{\partial x} + 2\kappa \frac{\partial^2 c}{\partial x^2} \right]$ $\frac{\partial c}{\partial t} = \frac{M}{N_v} \left[G " \frac{\partial^2 c}{\partial x^2} \right]$ No, the answer is incorrect. Score: 0 Accepted Answers: $\frac{\partial c}{\partial t} = \frac{M}{N_v} \left[G " \frac{\partial^2 c}{\partial x^2} - 2\kappa \frac{\partial^4 c}{\partial x^4} \right]$

Previous Page

End