reviewer3@nptel.iitm.ac.in ▼

X

PTTE

Courses » Phase field modelling: the materials science, mathematics and computational aspects

Announcements Course Ask a Question Progress Mentor

FAQ

Unit 3 - Week 2

Course outline	Assignment 2	
How to access	The due date for submitting this assignment has passed. As per our records you have not submitted this Due on 2018-08-15, 23: assignment.	59 IST.
Week-1	1) Consider a binary system where two phases are co-existing in equilibrium. Which property of the phases should be same	1 poin
Week 2	for maintaining the equilibrium?	
	Free energy.	
	Enthalpy.	
Module 2 -	Chemical potential.	
Lecture 7 : Diffusion and	Enthalpy of mixing.	
chemical potential	No, the answer is incorrect.	
potential	Score: 0	
	Accepted Answers: Chemical potential.	
	<pre>2) According to Fick's second law, if a composition profile has a convex curvature at a point, then the composition at that point with time?</pre>	1 poin
	Increases	
	© 2014 NPTEL -	
	Privacy & Terms	

Failure of classical diffusion equation

Module 2 -Lecture 9 :

Module 2 -Lecture 10: Some references

Module 3 -Lecture 11: Spinodal decomposition - some history

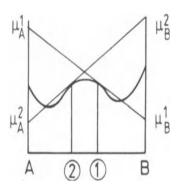
Module 3 -Lecture 12: Spinodal decomposition

Module 3 -Lecture 13: Stability

Accepted Answers:

Decreases.

- 3) Movement of atoms in a binary diffusion couple always takes place 1 point in such a way that
 - Composition is reduced to zero.
 - Composition gradient is maximized.
 - Composition gradient is evened out.
 - Chemical potential gradient is evened out.


No, the answer is incorrect.

Score: 0

Accepted Answers:

Chemical potential gradient is evened out.

4) As shown in the figure, the chemical potential of A at composition 1 (μ_A^1) is greater than **1 point** at composition 2 (μ_A^2) (case A) and the chemical potential of B at composition 2 (μ_B^2) is greater than at composition 1 (μ_R^1) (case B). So in this two cases the flux of A and B atoms are :

- Case A: 2 to 1 and case B: 1 to 2.
- Case A: 1 to 2 and case B: 2 to 1.

There will be flux, only if in case A: $\mu_B^1-\mu_A^1=0$ and in case B: $\mu_A^2-\mu_B^2=0$ conditions are

There will be no flux

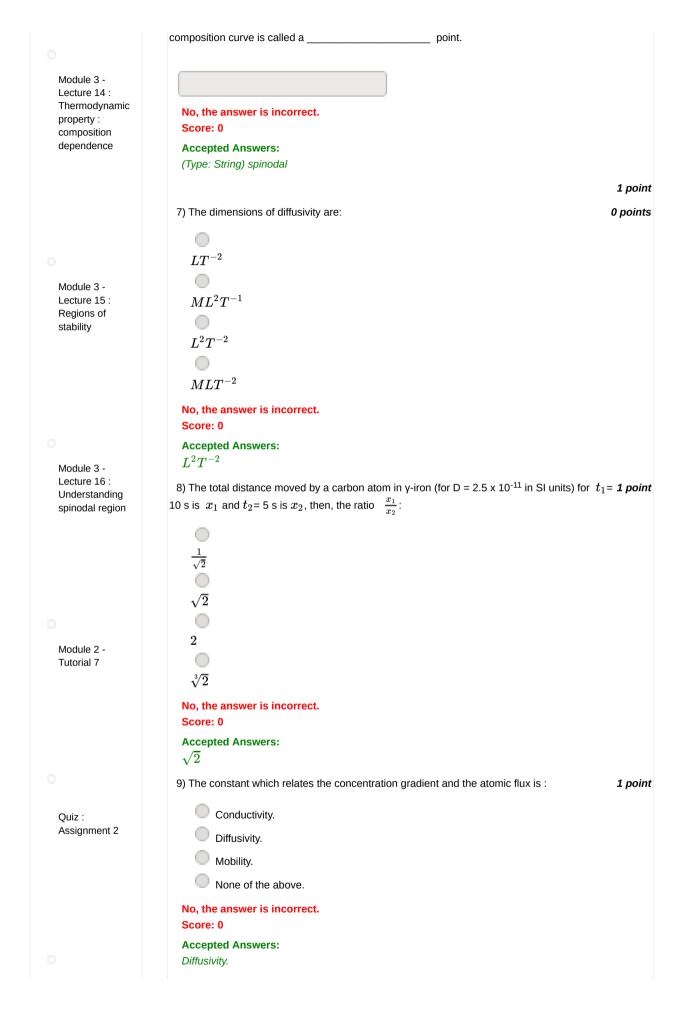
No, the answer is incorrect.

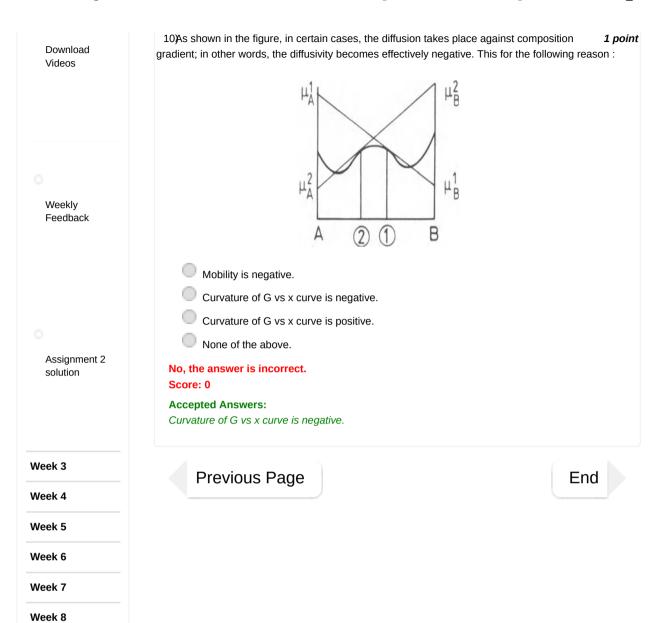
Score: 0

Accepted Answers:

Case A: 1 to 2 and case B: 2 to 1.

- 5) According to Fick's first law, the direction of atomic flux is 1 point
 - Along the direction of concentration gradient.
 - Opposite to the direction of a concentration gradient.
 - Perpendicular to the direction of concentration gradient.
 - None of the above.


No, the answer is incorrect.


Score: 0

Accepted Answers:

Opposite to the direction of a concentration gradient.

6) The point at which $\frac{\partial^2 G}{\partial x^2}$ is zero (where x represents composition) on the free energy versus

Week 9

Week 10

Week 11

Week 12