

Funded by

ASSCO

Phase field modelling: the materials science, m...

Quiz : Assignment 1	ce De			
Download Videos	No, the answer is incorrect. Score: 0			
Weekly Feedback	Accepted Answers: -3.39 kJ/mol			
Assignment 1 solution	4) For the same A-B alloy (ideal solid solution) calculate the chemical potential of A and B at 500^0 C (assume free energies of pure A and B zero) :	0 points		
Week 2	-9.73 kJ/mol and -2.07 kJ/mol.			
Week 3	14.52 kJ/mol and -3.12 kJ/mol.			
Week 4	 9.73 kJ/mol and 2.07 kJ/mol. 			
Week F	14.52 kJ/mol and 3.12 kJ/mol.			
Week 5	No, the answer is incorrect. Score: 0			
Week 6	Accepted Answers: -9.73 kJ/mol and -2.07 kJ/mol.			
Week 7 Week 8	5) Consider a system consisting of A and B atoms. Let the total number of atoms be equal to 100. Consider two cases when a NA = 60 NB = 40 and b NA = 40 NB = 60	1 point		
Week 9	Would the configurational entropy be different in the two cases?			
Week 10	• Yes			
Week 11	— No			
	Can't say			
Week 12	No, the answer is incorrect. Score: 0			
	Accepted Answers:			
	NO	1 point		
	o) Phase separating systems are mose in which interaction parameter (2) is.	т ротп		
	$\Omega < 0$			
	$\Omega>0$			
	$\Omega=0$			
	equal to number of phases			
	No, the answer is incorrect.			
	Accepted Answers:			
	$\Omega>0$			
	7) Phase separation can't be expected when a change in enthalpy of mixing is(positive or negative)			
	No, the answer is incorrect.			
	Accepted Answers:			
	(Type: String) negative			

	1 po
8) A tangent is drawn to the G versus X curve of a binary alloy system at some composition X0. The points of intersection of this tangent with the G-axis (at compositions X=0 and X=1) gives:	1 p
Free energy of mixing of the components at that composition.	
Enthalpy of Mixing of the components at that composition.	
Chemical Potential of the components of that composition.	
Enthalpy of formation of the components at that composition.	
No, the answer is incorrect. Score: 0	
Accepted Answers: Chemical Potential of the components of that composition.	
9) Which of the following expressions give the enthalpy of a pure, single phase material?	1 pe
$\int C_p dT$ $\int \frac{C_p}{T} dT$ $\frac{dC_p}{dT}$ $C_p ln(C_p) = 1$	
No, the answer is incorrect. Score: 0	
Accepted Answers: $\int C_p dT$	
10) nteraction parameter $\Omega > 0$, means that:	1 p
A-A, B-B bonds are preferred over A-B bonds.	
A-B bonds are preferred over A-A, B-B bonds.	
There is no preference.	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: A-A. B-B bonds are preferred over A-B bonds.	
11) n Sterling's approximation, the error at $N = 50$ is nearly:	1 p
0 0 2%	
2%	
50%	
No the answer is incorrect	
Score: 0	
Accepted Answers:	
2%	
12Fe – Fe3C phase diagram is a/an :	1 p

Phase field modelling: the materials science, m...

equilibrium phase diagram.	
metastable phase diagram.	
Unstable phase diagram.	
None of the above.	
No, the answer is incorrect. Score: 0	
Accepted Answers: metastable phase diagram.	
Previous Page	End

Previous Page