

Funded by

Phase field modelling: the materials science, m...

- 0.28708
- 0.28208
- 0.29808

No, the answer is incorrect.
Score: 0
0.28708
6) Which of the following options is/are represented by a non-conserved order parameter? 1 point
grain orientation in a grain growth model.
% fraction of ordered phase during an order-disorder transformation.
composition in a diffusion problem.
both (a) and (b)
No, the answer is incorrect. Score: 0
Accepted Answers: both (a) and (b)
7) Consider a system in which the contribution of bulk free energy is given 1 poin by $Ac^2(1-c)^2$ and interfacial free energy is given by $\kappa (\frac{dc}{dx})^2$. Equilibrium in a system of the above type is achieved in such a way that:
bulk free energy and interfacial energy is minimized to zero.
changes in bulk free energy and interfacial energy balance each other.
\bigcirc change in bulk free energy is greater than the change in interfacial free energy
\bigcirc change in bulk free energy is less than the change in interfacial free energy
No, the answer is incorrect. Score: 0
Accepted Answers:
changes in buik free energy and interfacial energy balance each other.
8) State whether true or false : "Grain growth phenomena is modelled using Allen-Cahn equation because the order parameter in such a model is not conserved"
No, the answer is incorrect. Score: 0
Accepted Answers:
(Type: String) true
1 poin
9) The semi-implicit form of Allen-Cahn equation in Fourier space is given by : 1 poin
${ ilde \phi}^{t+\Delta t} = rac{\phi - L\Delta t ilde g}{1+2\kappa Lk^2}$
${ ilde \phi}^{t+\Delta t} = rac{{ ilde \phi}^{i}+L\Delta t { ilde g}}{1+2\kappa Lk^2}$
$ ilde{\phi}^{t+\Delta t}=rac{ ilde{\phi}^{^{-}}-L\Delta t ilde{g}}{1-2\kappa Lk^2}$
$\tilde{\gamma}^t + \Delta t = ilde{\phi}^t + L \Delta t ilde{g}$
$\varphi = \frac{1}{1 - 2\kappa Lk^2}$

No, the answer is incorrect.

Score: 0

Accepted Answers:
$$\tilde{\phi}^{t+\Delta t} = rac{\tilde{\phi}^t - L\Delta t \tilde{g}}{1 + 2\kappa L k^2}$$

10)Which among the following is the correct expression for concentration profile according to **1** *point* the analytical solution of the Cahn-Hilliard equation? (Note: All symbols have usual meaning)

$$c = \frac{1}{1+e^{\sqrt{\frac{A}{\kappa}x}}}$$

$$c = \frac{1}{1+e^{-\sqrt{\frac{A}{\kappa}x}}}$$

$$c = \frac{1}{1-e^{\sqrt{\frac{A}{\kappa}x}}}$$

$$c = \frac{1}{1-e^{-\sqrt{\frac{A}{\kappa}x}}}$$

No, the answer is incorrect. Score: 0

Accepted Answers: $c = \frac{1}{1 + e^{-\sqrt{\frac{A}{\kappa}x}}}$

Previous Page

End