Unit 5 - Week 3: Large-displacement analysis of a cantilever beam and pseudo rigid-body modeling

Course outline

How to access the home page?

Assignment 0
Week 1: Overview of compliant mechanisms; mobility analysis.

Week 2: Modeling of flexures and finite element analysis

Week 3: Largedisplacement analysis of a cantilever beam and pseudo rigid-body modeling

Lec 13: Deformation of a cantilever under a tip-load, using elliptic integrals

Lec 14: Elliptic integrals and their use in elastica analysis

Lec 15: Frisch-Fay's approach to large deformation of beam

Lec 16: Burns-
Crossley's kinematic model

Lec 17: HowellMidha's elastic model

Lec 18: Putting together the pseudo rigid-body model

Quiz : Assignment
Week 3
Solutions

Week 4: Analysis and

 synthesis using pseudo rigid-body models
Week 5: Structural

 optimization approach to "design for deflection" of compliant mechanismsWeek 6: Designing compliant mechanisms using continuum topology optimization; distributed compliance

Assignment Week 3

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) A Pseudo Rigid Body (PRB) model of a compliant parallel-stage mechanism...
is similar to that of a cantilever beam.
is similar to that of a fixed-fixed beam.
contains two half-PRBs.
contains four half-PRBs.
No, the answer is incorrect.
Score: 0
Accepted Answers:
contains four half-PRBs.
2) The complete elliptical integrals $F(k)$ are special cases of the incomplete elliptical integrals $F(\phi, k)$, when ϕ is 1 point
\square
$\pi / 4$
$\pi / 2$
\bigcirc
π
$2 / \pi$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\pi / 2$
3) Assertion: The large-displacement behavior of a cantilever beam with end load can be obtained as an elliptical 1 point integral solution.

Reasoning: The beam equation can be converted to a single-variable equation for linearly elastic, inextensible, rigid-inshear, and of constant-cross-section conditions.

Assertion is correct but not the reasoning.
Assertion is incorrect but the reasoning is correct.
Neither assertion nor reasoning is correct.
Both assertion and reasoning are correct.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both assertion and reasoning are correct.
4) A complete integral of I kind is given by:

1 point
$F(p, \phi)=\int_{0}^{\phi} \frac{d \phi}{\sqrt{1-p^{2} \sin ^{2} \phi}}$
$F(p, \pi / 2)=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-p^{2} \sin ^{2} \phi}}$
$E(p, \phi)=\int_{0}^{\phi} \sqrt{1-p^{2} \sin ^{2} \phi} d \phi$

Week 7: Spring-lever
(SL) and spring-masslever (SML) models for compliant mechanisms, and selection maps

Week 8: Nondimensional analysis of compliant mechanisms and kinetoelastic maps

Week 9: Instant centre and building-block methods for designing compliant mechanisms

Week 10: Bistable
compliant
mechanisms and static balancing of compliant mechanisms

Week 11: Compliant mechanisms and microsystems; materials and prototyping of compliant mechanisms

Week 12: Six casestudies of compliant mechanisms

MATLAB Online Access

MATLAB: Introduction to MATLAB

MATLAB: Vector and Matrix Operations

MATLAB: Advanced

 Topics$E(p, \pi / 2)=\int_{0}^{\pi / 2} \sqrt{1-p^{2} \sin ^{2} \phi} d \phi$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$F(p, \pi / 2)=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-p^{2} \sin ^{2} \phi}}$
5) The non-dimensional quantity $\eta=\frac{F l^{2}}{E I}$ is an index of

Transverse displacement
Stretching
Bending
Axial displacement
No, the answer is incorrect.
Score: 0
Accepted Answers:
Bending
6) The next five questions are based on the following figure.

1 point

For a cantilever beam as shown in the figure, the index of bending is
0.2837
0.5326
0.7298

1
No, the answer is incorrect.
Score: 0
Accepted Answers:
0.5326
7) In a pseudo rigid body model of a cantilever beam, the torsion spring is attached at what distance(mm) from the fixed 1 point end of the beam
8.33
12.40
41.67
37.50

No, the answer is incorrect.
Score: 0
Accepted Answers:
8.33
8) The torsion stiffness κ at the joint in Nm is given by

1 point
1.056
3.168
10.56
31.68

No, the answer is incorrect.
Score: 0
Accepted Answers:
1.056
9) The equation of the locus of the loaded tip of the cantilever in a rectangular coordinate system is

1 point Note: Take the origin $(0,0)$ at the fixed end of the cantilever beam.

$$
x^{2}+y^{2}=50^{2}
$$

$$
\begin{aligned}
& \frac{1}{x^{2}}+\frac{1}{y^{2}}=50^{2} \\
& x^{2}+y^{2}=\left(\frac{125}{3}\right)^{2} \\
& \left(x-\frac{25}{3}\right)^{2}+y^{2}=\left(\frac{125}{3}\right)^{2}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left(x-\frac{25}{3}\right)^{2}+y^{2}=\left(\frac{125}{3}\right)^{2}
$$

10)The pseudo rigid-body model is based on:
A. Kinematic approximation: The locus of deflection of the loaded tip traces a circular arc for small deformations only
B. Elastostatic approximation: The resistance to deflection of the beam is captured with a torsion spring whose stiffness is constant over a small range only.

Only A is correct.
Only B is correct.
Both A and B are correct.
Both A and B are incorrect.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both A and B are incorrect.

> Previous Page

