ourses » Radiative	Heat Transfer	Announcemente	Course	Ask a Question	Progress	EAO
		Announcements	Course	Ask a Question	Flogless	FAQ
Jnit 6 - We	ek 5					
Register for Certification exam	Assigr	nment 5				
Course outline	The due date As per our re assignment.	for submitting this as cords you have not su	signment has bmitted this	passed. Due on 20	19-03-06, 23	:59 IS
How to access the portal	1) Radiative p solved using the	roblem between concen e P_1 method. Assuming	tric cylinders c gray medium	of radius 0.5 m and 1.0 ($\kappa = 0.1 \text{ m}^{-1}$) at radiative	m, respectively ve equilibrium b	is 1 pc etween t
Week 1	cylinders ($T_1 = 1$	500 K, <i>T₂</i> = 1000K), the	temperature o	f the gas at r = 0.75 m	is approximatel	y:
Week 2	900 k	<				
Week 3	0 752 K	ζ.				
Week 4	🔘 858 K	<				
Week 5	No, the answ Score: 0	wer is incorrect.				
Approximate Methods-II	Accepted A 900 K	nswers:				
 The Method of Spherical Harmonics (PN Approximation)-I 	2) Calculate the Schuster-Schwigiven τ_L =0.5,	ne radiative heat flux from arzschild approximation:	n a gray non s	scattering isothermal m	edium using the	е 1 ро
 The Method of Spherical Harmonics (PN Approximation)-II 	τ=0, Τ =500 Τ _w = 800	к) к.				
 Discrete Ordinate Method (DOM) 	• 17.8 • -12.6 • 1 872	KW/m ² KW/m ² 2 KW/m ²				
Zone Method	-1.78	KW/m ²				
Quiz : Assignment 5	No, the answ	wer is incorrect.				
Solution of	Score: 0					

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Radiative Heat Transfer - - Unit 6 - Week 5

VIDEOS	O 4/3
Text Transcript	De 2/3
	No, the answer is incorrect.
	Score: 0
	Accepted Answers: 4/3
	4) Consider gray isotropically scattering medium at radiative equilibrium bounded by $1 pc$ f gray isothermal plates at same uniform temperature T. The incident radiation, $G(\tau)$ as calculated with the P ₁ method varies:
	Depends quadratically with optical thickness
	Depends inversely with optical thickness
	Independent of optical thickness
	Linearly with optical thickness
	No, the answer is incorrect. Score: 0
	Accepted Answers: Independent of optical thickness
	5) Consider gray isotropically scattering medium bounded by gray isothermal plates at same 1 <i>point</i> uniform temperature T . If the heat flux between the plates varies linearly with optical path length, the incident radiation, $G(\tau)$ as calculated with the P ₁ method varies
	Linearly with optical thickness
	Independent of optical thickness
	Depends inversely with optical thickness
	Depends quadratically with optical thickness
	No, the answer is incorrect. Score: 0
	Accepted Answers: Depends quadratically with optical thickness
	6) Which of the following statements is true for first order spherical harmonics method P_1 1 point
	Intensity is assumed to not depend on azimuth angle
	Intensity is assumed to not depend on polar angle
	Intensity is assumed to not depend on azimuth and polar angle
	None of the above
	No, the answer is incorrect. Score: 0
	Accepted Answers: None of the above
	7) In Discrete Ordinate Method (DOM), the ray effect refers to 1 point
	Widening of collimated radiation beam
	Spatial discretization errors in intensity
	Error due to scattering
	Angular discretization error
	No, the answer is incorrect. Score: 0

Accepted Answers: Angular discretization error	
8) Consider two large parallel plate is at temperature $T_1 = 8$ value of optical depth using no Assume the radiative heat flux	el, black and isothermal plates separated by a distance L. One 1 p 300 K and other is at $T_2 = 750$ K. Determine the approximation-symmetric S2 approximation method? K is 100 W/m ²
🔍 70 m	
52 m	
🔘 20 m	
🔵 40 m	
No, the answer is incorrec	ct.
Score: 0	
Accepted Answers:	
s) A gray gas ($I_g = 800$ K) is the cylinders are isothermal w ($R_2 = 1$ m, $T_2 = 1000$ K). Usin of cylinder Given $s_1s_2 = 0.75$ A ₁ $s_2s_2 = 0.75$ A ₂	initial between two concentric infinitely long black cylinders. Both 1 μ ith diffuse surface. If cylinder 1 (R_1 =0.5 m, T_1 = 500 K) and cylinder g the Zone method calculate the direct exchange area s_1g per unit le
0 1 m ²	
0.785 m ²	
0.545 m ²	
0.25 m ²	
No, the answer is incorrec	ct.
Score: 0	
$0.785 m^2$	
10)n the above problem, detection of the cylinder 1	ermine the radiative heat flux per unit cylinder length on the 1
-44.787 kW/m ²	
44.787 kW/m ²	
-140.83 kW/m ²	
140.83 kW/m ²	
No, the answer is incorred Score: 0	ct.
Accepted Answers: -44.787 kW/m ²	
Provious Pag	o End

f > in 8⁺