Courses » Radiative Heat Transfer Announcements Course Ask a Question Progress FAQ of

## Unit 6 - Week 5

| Register for Certification exam |
| :---: |
| Course outline |
| How to access the portal |
| Week 1 |
| Week 2 |
| Week 3 |
| Week 4 |
| Week 5 |
| Approximate Methods-II |
| The Method of Spherical Harmonics (PN Approximation)-I |
| The Method of Spherical Harmonics (PN Approximation)-II |
| Discrete Ordinate Method (DOM) |
| - Zone Method |
| Quiz : <br> Assignment 5 |
| Solution of Assignment 5 |

## Assignment 5

The due date for submitting this assignment has passed.
As per our records you have not submitted this Due on 2019-03-06, 23:59 IS assignment.

1) Radiative problem between concentric cylinders of radius 0.5 m and 1.0 m , respectively is $\mathbf{1}$ point solved using the $\boldsymbol{P}_{\mathbf{1}}$ method. Assuming gray medium ( $\mathrm{K}=0.1 \mathrm{~m}^{-1}$ ) at radiative equilibrium between the cylinders ( $T_{1}=500 \mathrm{~K}, T_{2}=1000 \mathrm{~K}$ ), the temperature of the gas at $\mathrm{r}=0.75 \mathrm{~m}$ is approximately:900 K752 K;642 K858 K
No, the answer is incorrect.
Score: 0
Accepted Answers:
900 K
2) Calculate the radiative heat flux from a gray non scattering isothermal medium using the $\mathbf{1}$ point Schuster-Schwarzschild approximation:
given $\tau_{L}=0.5$,

$$
\begin{aligned}
& \mathrm{\tau}=0, \\
& \mathrm{~T}=500 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{w}}=800 \mathrm{~K} . \\
& \\
& 17.8 \mathrm{KW} / \mathrm{m}^{2} \\
& -12.6 \mathrm{KW} / \mathrm{m}^{2} \\
& 1.872 \mathrm{KW} / \mathrm{m}^{2} \\
& -1.78 \mathrm{KW} / \mathrm{m}^{2}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
-12.6 KW/m²
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
NPTEL
National Programme on Technology Enhanced Learning

In association with

Funded by

| VIDEOS |  | $4 / 3$ |
| :--- | :--- | :--- |
| Text Transcript |  | $2 / 3$ |

No, the answer is incorrect.
Score: 0
Accepted Answers:
4/3
4) Consider gray isotropically scattering medium at radiative equilibrium bounded by gray isothermal plates at same uniform temperature T. The incident radiation, $G(\tau)$ as calculated with the $\mathbf{P}_{\mathbf{1}}$ method varies:Depends quadratically with optical thicknessDepends inversely with optical thicknessIndependent of optical thicknessLinearly with optical thickness
No, the answer is incorrect.
Score: 0
Accepted Answers:
Independent of optical thickness
5) Consider gray isotropically scattering medium bounded by gray isothermal plates at same 1 point uniform temperature $T$. If the heat flux between the plates varies linearly with optical path length, the incident radiation, $G(\tau)$ as calculated with the $P_{\mathbf{1}}$ method variesLinearly with optical thicknessIndependent of optical thicknessDepends inversely with optical thicknessDepends quadratically with optical thickness
No, the answer is incorrect.
Score: 0
Accepted Answers:
Depends quadratically with optical thickness
6) Which of the following statements is true for first order spherical harmonics method $P_{1}$Intensity is assumed to not depend on azimuth angleIntensity is assumed to not depend on polar angleIntensity is assumed to not depend on azimuth and polar angleNone of the above
No, the answer is incorrect.
Score: 0
Accepted Answers:
None of the above
7) In Discrete Ordinate Method (DOM), the ray effect refers to

1 pointWidening of collimated radiation beamSpatial discretization errors in intensityError due to scatteringAngular discretization error
No, the answer is incorrect.
Score: 0

## Accepted Answers:

Angular discretization error
8) Consider two large parallel, black and isothermal plates separated by a distance L. One 1 point plate is at temperature $T_{1}=800 \mathrm{~K}$ and other is at $\mathrm{T}_{2}=750 \mathrm{~K}$. Determine the approximate value of optical depth using non-symmetric S2 approximation method?
Assume the radiative heat flux is $100 \mathrm{~W} / \mathrm{m}^{2}$


No, the answer is incorrect.
Score: 0
Accepted Answers:
52 m
9) A gray gas ( $T_{g}=800 \mathrm{~K}$ ) is filled between two concentric infinitely long black cylinders. Both 1 porr the cylinders are isothermal with diffuse surface. If cylinder $1\left(R_{1}=0.5 \mathrm{~m}, T_{1}=500 \mathrm{~K}\right)$ and cylinder 2 $\left(R_{2}=1 \mathrm{~m}, T_{2}=1000 \mathrm{~K}\right)$. Using the Zone method calculate the direct exchange area $s_{1} g$ per unit length of cylinder
Given $\mathrm{s}_{1} \mathrm{~s}_{2}=0.75 \mathrm{~A}_{1}$
$\mathrm{s}_{2} \mathrm{~s}_{2}=0.75 \mathrm{~A}_{2}$$1 \mathrm{~m}^{2}$$0.785 \mathrm{~m}^{2}$$0.545 \mathrm{~m}^{2}$$0.25 \mathrm{~m}^{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
$0.785 \mathrm{~m}^{2}$
10)n the above problem, determine the radiative heat flux per unit cylinder length on the cylinder 1$-44.787 \mathrm{~kW} / \mathrm{m}^{2}$$44.787 \mathrm{~kW} / \mathrm{m}^{2}$$-140.83 \mathrm{~kW} / \mathrm{m}^{2}$
$140.83 \mathrm{~kW} / \mathrm{m}^{2}$
No, the answer is incorrect.
Score: 0
Accepted Answers:
-44.787 kW/m ${ }^{2}$

## Previous Page

