Courses » Radiative Heat Tra	ansfer		Announcements	Course	Ask a Questio	n Progress	FAQ
Unit 5 - Week 4	L						y
Register for Certification exam	Assignme	ent 4					in
Course outline		ubmitting this assignment has you have not submitted this a			Due on 2	2019-02-27, 23	3:59 IST 8+
How to access the portal		radiation is transmitted through a mount of radiation transmitted w				Keeping gas	1 point
Week 1	0.9						
Week 2	0.25						
Week 3	0.75						
	0.2						
Week 4	No, the answer is	incorrect.					
Radiative Transfer in Participating Media	Score: 0						
 Equation of Radiative Transfer 	Accepted Answers 0.25	5:					
 Solution of Radiative Transfer Equation 	, -	e a transparent test section radia the same temperature if	tes energy. The intensity	of radiation e	mitted from the gas	will be nearly equ	al to 1 point
Radiative Heat Transfer in Cylindrical Media		hickness in the test section is zer					
Approximate Methods-I		hickness in the test section is mu		t zero			
Quiz : Assignment 4	-	hickness in the test section is mu	ich larger than 1				
Solution of Assignment 4		ature of the gas is very high					
Week 5	No, the answer is Score: 0	incorrect.					
Week 6	Accepted Answers	s: as in the test section is much larg	er than 1				
Week 7	3) Consider a cube	of dimension 1 cm containing a) at temperatu	ıre T = 1000 K. The	total heat loss fror	m the 1 point
Week 8	cube is approximately						
DOWNLOAD VIDEOS	0.04536 W 0.4536 W						
Text Transcript	0.4330 W						
	0.20 W						
	No, the answer is	incorrect.					
	Score: 0						
	Accepted Answers 0.04536 W	6:					
	4)						1 point
	A laser beam is directed onto the atmosphere of a (hypothetical) planet. The planet's atmosphere						
	0.01% by volume of an absorbing gas. The absorbing gas has a molecular weight of 20 and, at						
		n absorption coefficie					
		of the atmosphere ca					-
		e values at the planet		dL = 2k	m is a charac	teristic lengt	th. The at
	coefficient of	gas on the surface of p	planet in cm ⁻⁺ is				
	4.570 × 10 ⁶						
	3.890 x 10 ⁻⁶						
	3.890 x 10 ⁶						
	© 20)14 NPTEL - Privacy & Terms - Ho	nor Code - FAQs -				
project of		In association with	Funded by		F	Powered by	_
	onal Programme on anology Enhanced Learning	NASSCO	Government Ministry of H	of India uman Resource	Development	Googl	e

5) For the above problem, the fraction of the laser energy arrives at the planet's surface is	1 point
O 60 %	
0 40 %	
0 20 %	
0 80 %	
No, the answer is incorrect.	4
Score: 0	
Accepted Answers: 40 %	y
6) Consider an optically thick gray medium ($\kappa = 10 \text{ m}^{-1}$) contained between two black, isothermal cylinders. The inner cylinder has a	1.0
radius of 0.5 m and is at temperature 500 K. The outer cylinder has a radius of 1 m and is at temperature 1000 K. Assume radiative equi	
the magnitude of heat flux on the outer cylinder:	ir
15,984 W/m ²	
500 W/m ²	8
9,034 W/m ²	
10,239 W/m ²	
No, the answer is incorrect.	
Score: 0	
Accepted Answers: 10,239 W/m ²	
	1
7) A semi-infinite medium contains a gray gas ($\kappa = 1m^{-1}$, $T = 1000 K$). The intensity of radiation leaving the medium is	1 point
36,024 W/sr	
0 4,075 W/sr	
18,047 W/sr	
9,042 W/sr	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
18,047 W/sr	
8) In the above problem the radiative heat flux exiting the medium is	1 point
10.4 kW/m ²	
 37.8 kW/m² 	
156.2 kW/m ²	
60.2 kW/m ²	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
37.8 kW/m ²	
9) For radiative equilibrium in a gray gas bounded by two plane parallel infinite plates, the temperature difference between gas and the walls decreases with:	1 point
Increase in optical depth	
Decrease in optical depth	
Remains constant	
U Is zero for all values of optical depth	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
Increase in optical depth	
10) For radiative equilibrium in a gray gas bounded by two plane parallel infinite plates, the incident radiation at any point inside the	1 point
medium is given as:	
πσT ⁴	
4πστ ⁴	
● _{σT⁴}	
4σT ⁴	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
$4\sigma T^4$	

Previous Page

End

