Jhit 4 - Wee	ek 3
Register for Certification exam	Assignment 3
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this Due on 2019-02-20, 23:59 IS assignment.
How to access the portal	1) Consider a cubical enclosure of side 1.0 cm. The radiative space resistance between parallel faces of the cube is
Week 1	□ 1 cm ⁻²
Week 2	○ 5 cm ⁻²
Week 3	3 cm ⁻²
WEEK S	10 cm ⁻²
Network Analogy	No, the answer is incorrect.
Solution	Score: 0
Methods for Governing	5 cm ⁻²
Integral Equations	2) Consider an infinitely long pipe with cross-section in the form of an equilateral triangle of 1 po
Radiative Heat	side 1 cm. The radiative space resistance between any two surfaces of the pipe per unit area is:
Exchange between	0 1 cm ⁻²
Partially Specular Gray	2 cm ⁻²
Surfaces	□ 3 cm ⁻²
Non-Gray Surfaces	
Surraces	No, the answer is incorrect.
 Radiative Heat Transfer in the 	Score: U
Presence of Conduction/Convection	2 cm^{-2}
O Quiz :	3) If a plane surface (ϵ = 0.9, T = 300 K) exposed to convective heat transfer from air (T = 290 1 po
Assignment 3	K) is losing , 100 W/m^2 amount of heat, then the approximate value of convective heat transfer
Solution of	coefficient detween the surface and air is
Assignment 3	● 4.75 W/m ⁻² -K

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Radiative Heat Transfer - - Unit 4 - Week 3

f > in 8⁺