

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Radiative Heat Transfer - - Unit 2 - Week 1

	No, the answer is incorrect.
ministry or numan resource De	Score: 0
	Accepted Answers:
	256 x 10 ⁵ W/(m ² -μm-sr)
	4) If the wavelength of a certain radiation beam is 0.50 µm, its wave number is 1 <i>point</i>
	● 40000 cm ⁻¹
	● 10000 cm ⁻¹ f
	□ 20000 cm ⁻¹
	─ 2000 cm ⁻¹
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	20000 cm ⁻¹
	5) Assuming Earth to be a black sphere with a surface temperature of 300 K, the internal heat 1 pc generation of Earth in order to maintain its temperature is (neglect radiation from the stars, but not the sun) (radius of the Earth <i>R</i> =6.37 X 10 ⁶ m)
	8.31 x 10 ¹⁶ W
	\bigcirc 6.17 x 10 ¹⁶ W
	$6.17 \times 10^{18} \text{ W}$
	8.31 x 10 ¹⁸ W
	No, the answer is incorrect.
	Score: 0
	Accepted Answers: $6.17 \times 10^{16} W$
	6) A window (consisting of a vertical sheet of plane glass) is exposed to direct sunshine at a 1 point strength of 1000 W/m ² . The window is pointing due south, while the sun is in the southwest, 30° above the horizon. Estimate the amount of solar energy in W/m ² reflected by the window. Assume glass to be gray with ρ =0.08.
	612.4
	49.0
	707.1
	0 1000
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	49.0
	7) A diffusely emitting surface at 500 K has a spectral, directional emittance that can be 1 <i>point</i> approximated by 0.5 in the range $0 < \lambda < 5 \ \mu m$ and 0.3 for $\lambda > 5$. The total, hemispherical emittance of this surface surrounded by air is
	0.3103
	0.3323
	0.5023
	0.5525
	No, the answer is incorrect.
	Score: 0

8) The solid angle subtended by 1	Bth part of a sphere at its ce	nter is	1 poi
Ο π/8			
Ο π/4			
Ο π/2			
🔘 л/6			
No, the answer is incorrect. Score: 0			
Accepted Answers: π/2			
9) A metal (m ₂ =50–50 <i>i</i>) is coated acuum. The normal reflectance of t			1 рс
ο ο			
0.852			
0.923			
1.0			
No, the answer is incorrect. Score: 0			
Accepted Answers: 0.923			
10)A satellite orbiting Earth has a p /hich is diffuse emitter with spectral		ctrally selective "Black nickel",	1 poi
the coated surface is exposed to subsorptivity of the surface is	blar irradiation (1353 W/m ²)	normal to the surface, the norr	nal
0.25			
0.65			
0.86			
0.90			
No, the answer is incorrect. Score: 0			

Previous Page

End

f > in 8⁺