Unit 12 - Week 7

How does an NPTEL online

Course outline

MATLAB_SCRIPTS

LAMMPS_SCRIPTS

Installation_Procedure

course work?

MATLAB

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Statistical mechanics 2

Basic introduction to

O Quiz: Assignment 7

Week 7 Feedback :

Materials Modelling

Additional Documents

Download videos

Text Transcripts

Week 7 Lecture materials

Foundations of Computational

mechanics

The due date for submitting this assignment has p As per our records you have not submitted this as		8, 23:59
	on of the entropy that does not take into account the indistinguishability of particles, extensive. This leads to a paradox known as the Gibbs paradox.	
○ True ○ False		
No, the answer is incorrect.		
Score: 0 Accepted Answers: True		
The of a system is defined to be the diff function of positions and velocities.	ference between the kinetic and potential energies of the system expressed as a	
Lagrangian		
Hamiltonian		
O Total Energy		
None of the above		
No, the answer is incorrect. Score: 0		
Accepted Answers:		
Lagrangian		
3) True or False:		
For the Gamma (Γ) function,		
$x\Gamma(x) = \Gamma(x+1)$		
○ True		
False		
No, the answer is incorrect. Score: 0		
Accepted Answers:		
True		
4) The total number of possible states for a single pa	particle with an energy less than E^st is	
$\phi_{\leq E^*} = \frac{\pi}{6} \left(\frac{E^* 8mV^{\frac{2}{3}}}{h^2} \right)^{\frac{2}{3}}$ True		
False		
No, the answer is incorrect.		
Score: 0 Accepted Answers:		
False		
 The Lagrangian of a system is defined to be the s conjugate momenta. 	sum of the kinetic and potential energies expressed as a function of positions and their	
○ True		
False		
No, the answer is incorrect.		
Score: 0 Accepted Answers:		
False		
6) Complete the Hamilton's equations below:		
$\frac{dp}{dt} = $		

