

National Programme on Technology Enhanced Learning In association with

G+

Surrogates and Approximations in Engineering...

ourse	Accianment 1	
utline	Assignment 1	
ow to access ne portal	The due date for submitting this assignment has passed.As per our records you have not submitted thisDue on 2018-09-05, 23:assignment.	59 IST.
re-requisite ssignment	1) Maximization of $f(x)$ is equivalent to	1 point
/eek 1	\bigcirc	
	Minimization of $-f(x)$	
Overview and Motivation of Course	Minimization of $\frac{1}{f(x)}$	
Basic Optimization	 Both of (i) and (ii) None of the above 	
Problem Formulation	No, the answer is incorrect.	
Active and	Score: 0	
Inactive constraint,	Accepted Answers:	
Strong, weak,	Minimization of $-f(x)$	
global, local optima	2) Minimize $f(x_1,x_2)=x_1+2x_2-4$ subject to $2x_1+x_2\leq 4, x_1\geq 0, x_2\geq 0$	1 point
Calculus		
related to Optimization	$f(x_1,x_2)pprox -4$	
Quiz : Assignment 1	$f(x_1,x_2)pprox 9$	
WEEK 1 - FEEDBACK -	$f(x_1,x_2)pprox 0$	
Surrogates and Approximations	The problem is infeasible	
in Engineering Design	No, the answer is incorrect. Score: 0	
Veek 2	Accepted Answers:	
	$f(x_1,x_2)pprox -4$	
Veek 3	3) Feasible design can violate	1 point
/eek 4	0	
OOWNLOAD IDEOS	"≤" type constraints	
	" \geq " type constraints	
	• "=" type constraints	
	None of these	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers: None of these	
	4) The number of active inequality constraints at the optimum	1 point
	Must be larger than the number of design variables	
	Can be less than or equal to the number of design variables	
	No restriction on the number of active inequality constraints	

Must be equal to the number of design variables	
No, the answer is incorrect. Score: 0	
Accepted Answers: Can be less than or equal to the number of design variables	
5) A function $f(x)$ can have	1 point
Only one global minimum point.	
Several local optima in a small neighborhood of \mathbf{x}^*	
More than one global minimum point.	
Only one local minimum point.	
No, the answer is incorrect. Score: 0	
Accepted Answers: More than one global minimum point.	
6) Hessian matrix of a discontinuous function can be	1 point
Symmetric	
Asymmetric	
O Identity	
Cannot be defined	
No, the answer is incorrect. Score: 0	
Accepted Answers: Cannot be defined	
7) Write taylor's expansion for e^x in terms of $x^*=1$ at the point	0 points
•	
$e^x=1+x+0.5x^2$	
$e^x = 7.389 - 7.389x + 3.6945x^2$	
$e^x = 2.7183 - 2.7183x + 1.3591x^2$	
Cannot be defined	
No, the answer is incorrect. Score: 0	
Accepted Answers: $e^x=2.7183-2.7183x+1.3591x^2$	
8) Determine the nature of the quadratic equation $f(x)=x_1^2-x_2^2+x_3^2-2x_2x_3$	1 point
Positive definite	
Positive semi definite	
Negative definite	
No, the answer is incorrect. Score: 0	
Accepted Answers:	

Indefinite	
9) A point satisfying the first order conditions of Lagrange multiplier theorem	1 point
Need not to be a minimum point	
Can be a local minimum point	
Can be an inflection point	
All of these	
No, the answer is incorrect. Score: 0	
Accepted Answers: All of these	
10)f the boundary of an active constraint is changed by one unit, the location of the optimum point	1 point
Doesn't change	
Depends on the function, it may or may not change	
It will change	
🔘 ii and iii	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
Depends on the function, it may or may not change	

Previous Page

End