# **Electron Diffraction and Imaging**

# <u>Assignment No – 07 (Solution)</u>

#### 1. The shape factor depends upon,

- a. The number of lattice points in the unit cell
- b. The number of atom present in the motif
- c. The atomic scattering factor of the atom
- d. The volume of the irradiated sample

## 2. The dynamic scattering occurs due to

- a. Multiple diffraction from the parallel planes
- b. Single diffraction from the parallel planes
- c. Elastic scattering followed by inelastic scattering
- d. Inelastic scattering followed by elastic scattering

# 3. If the scattered beam is scattered again in the direction of incident beam then, what would be the phase shift of the doubly scattered beam?

- a. Phase shift of  $\pi$
- b. Phase shift of  $\pi/2$
- c. Phase shift of  $\pi/4$
- d. No phase shift will occur

### 4. The two beam condition means that,

- a. There are only two diffraction spots in the SAD pattern
- b. The incident beam is scattered twice
- c. The direct beam and the diffracted beam are only strongly excited
- d. All of the above

## 5. Translational Moiré fringes appears in,

- a. The overlapping crystals having identical lattice parameter
- b. The overlapping crystal having identical lattice parameter but slightly rotated
- c. The overlapping crystals having slightly different lattice parameter
- d. strained crystals

### 6. Kinematical theory is more valid for

- a. Smaller value of deviation parameter s
- b. Larger value of deviation parameter s
- c. Large diffraction vector
- d. Very thin region of the sample

# 7. What are the possible changes likely to occur in the image of an edge dislocation line when the sample is tilted along an axis parallel to dislocation line direction?

- a. Image of dislocation can shift its position
- b. Image of dislocation will split into two

- c. Image of dislocation may disappear
- d. Width of the dislocation changes
- 8. The bend contour appear in samples during examination in TEM due to,
  - a. Rotation of the sample
  - b. Crystal having different lattice parameter
  - c. Bending of diffraction planes in the sample
  - d. Sample having variable thickness
- 9. If a dislocation is invisible for two g vectors 2-20 and 11-2, then Burgers vector b is,
  - a. [111]
  - b. [-1-11]
  - c. [-11-1]
  - d. [1-11]
- 10. Identify the defect in the TEM image.



- a. Stacking fault
- b. Dislocation net work
- c. Twin boundary
- d. Grain boundary
- 11. Stacking faults are imaged with different g vectors. Fault vector is 1/3[11-1]. Find out the g vector(s) for which fault is invisible
  - a. (200)
  - b. (020)
  - c. (1-10)
  - d. (11-1)
- 12. Under g.b = 0 the invisibility condition,
  - a. the contrast of screw dislocation completely vanishes
  - b. the contrast of edge dislocation completely vanishes
  - c. the contrast of mixed dislocation completely vanishes

d. the contrast of Frank dislocation loops completely vanishes

#### 13. Choose the correct statements

- a. For the g values for which partials dislocations go out of contrast, stacking faults invariably go out of contrast
- b. For the g values for which partials dislocations go out of contrast, stacking faults need not go out of contrast
- c. For the g values for which partials dislocations go out of contrast, stacking faults are always in contrast
- d. For those g values for which the stacking faults are in contrast, partials bounding the stacking faults are also in contrast

#### 14. Choose the correct statements

- a. The contrast of dislocation loop is independent of loop size
- b. The contrast of dislocation loop is dependent on loop size
- c. Frank and shear loops have the same Burgers vector but different slip planes in fcc crystals
- d. Frank loops and shear loops have the same slip plane but different Burgers vectors in fcc crystals

#### 15. Choose the correct statements

- a. The wavelength of the electrons inside the sample is more than that of wavelength of the incident electron beam.
- b. The wavelength of the electrons inside the sample is the same as that of wavelength of the incident electron beam
- c. The wavelength of the electrons inside the sample is less than that of the wavelength of the incident electron beam
- d. The wavelength of the electrons inside the sample is the same as that of orbital electron wavelength in the sample

NOTE: If you need any explanation for any of the question, you are welcome to write us on the forum. ---- NPTEL Team.