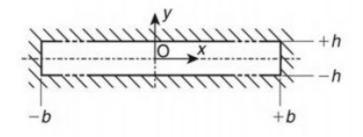

Х

reviewer1@nptel.iitm.ac.in ▼



Week 11

Week 12

Micro and nano scale energy transport - - Unit 10 - Week 9

geometry is given in Figure 1, with a width ($2b = 20 \mu m$), a depth ($2h = 1 \mu m$), and a length (I = 5 mm). Assume a uniform temperature T = 300 K, and an accommodation coefficient $\sigma = 0.9$ associated with Maxwell first-order slip boundary condition. The mean free path for the molecules at inlet and outlet are 34.8nm and 278nm respectively.

Calculate the outlet Knudsen number (Hint: Calculate based on microchannel depth).

- 0.139
- 0.278
- 0.576
- 0.0139

No, the answer is incorrect. Score: 0

Accepted Answers: 0.278

5) Based on data in problem 4; calculate the mass flow rate (Kg/S) through the microchannel **1** point assuming Maxwell first-order slip boundary condition. (Consider viscosity =2.588x10 -5 Pa S, R=2.08x10 2)

2.5e-12
3.6e10
6.636e-12
3.6e-12

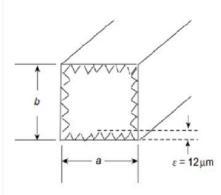
No, the answer is incorrect. Score: 0

Accepted Answers: 6.636e-12

6) Based on data in problem 4; Calculate the mass flow rate increase (in %) due to slip at the **1** point wall.

Score: 0		
No, the answer is incorrect.		
\bigcirc	33.6	
\bigcirc	80.6	
\bigcirc	50.6	
\bigcirc	90.6	

Accepted Answers: 90.6


7) Match the following Knudsen number regime and the best model to analyze the problem **1** point

- a. Kn=0i)Navier stokes equation with Slipb. Kn<1e -3</td>ii)Euler equation
- c. 1e-3 <Kn<0.1 iii)DSMC or lattice Boltzmann d. Kn>10 iv)Burnett equations with slip
 - a-iv,b-iii,c-ii,d-i
 - a-ii,b-iii,c-i,d-iv
 - a-ii,b-i,c-iv,d-iii
 - a-i,b-ii,c-iii,d-iv

No, the answer is incorrect. Score: 0 Accepted Answers:

a-ii,b-i,c-iv,d-iii

8) A microchannel is etched in silicon. The microchannel surface is intentionally etched to **1** point provide an average roughness of 12 μ m. The microchannel dimensions measured from the root of the roughness elements are: width = 200 μ m, height = 200 μ m, length = 10 mm. Water flows through the microchannels at a temperature of 300 K. The mass flow rate is 90e-6 kg/s. (Properties of saturated water at 300 K: viscosity = 0.855 e-3 N s/m2, density = 997 kg/m3, Specific heat = 4179 J/kg K, conductivity = 0.613 W/m K)

Calculate the constricted hydraulic diameter (in μ m).

No, the answer is incorrect. Score: 0

Accepted Answers: 176

9) Based on the data in Problem 8; Calculate the constricted Reynolds number.

598 1500 400 398 No, the answer is incorrect. Score: 0 **Accepted Answers:** 598 10Based on the data in Problem 8; Calculate the hydrodynamic entry length (in mm). 1 point 6.78 1.26 5.26 3.42 No, the answer is incorrect. Score: 0 **Accepted Answers:** 5.26 11Based on the data in Problem 8; Calculate the Poisuelle number based on Shaw and London 1 point correlation.

13.23

1 point

Micro and nano sca	ale energy transport Unit 10 - Week 9	
11.23		
14.23		
12.23		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		
14.23		
12Based on the data in Problem	n 8; Calculate the HagenBach factor for channel length.	1 poi
1.53		
7.33		
2.63		
3.33		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		
1.53		
13Based on the data in Problem	n 8; Calculate the core frictional pressure drop (in Pa).	1 po
29356		
39462		
43246		
44648		
No, the answer is incorrect. Score: 0 Accepted Answers: 29356		
14)Which of the following losses microchannel system	are important for calculating the pressure drop in a	1 po
Iosses in the bend, entra	nce and exit losses, developing region effects, and core frid	ctional
losses		
developing region effects	s, and core frictional losses	
	nce and exit losses, developing region effects	
core frictional losses		
No, the answer is incorrect. Score: 0		
Accepted Answers:		
-	nd exit losses, developing region effects, and core frictional	losses
	e peak height (R_{pm}) is 6 µm and the Floor distance to mealar to Fig of problem 8 is with width 200 µm with an average Reynolds number.	
1796.45		
1456.25		
2647.36		
6766.32		
No, the answer is incorrect.		
Score: 0		
Accepted Answers:		
1456.25		

Previous Page

End

