

NPTEI

reviewer1@nptel.iitm.ac.in ▼

Courses » Micro and nano scale energy transport

Announcements Course Forum Progress Mentor

Unit 8 - Week 7

Course outline	Week 7 Assignment 1	
	The due date for submitting this assignment has passed. Due on 2017-09-18, 23:5	9 IST.
How to access the portal?	Submitted assignment	
Week 1	Answer all questions. More than one answer may be correct	
Week 2	1.1)For 1- particle distribution during a transport process, the complex Lionville equation is converted into BTE using	1 point
Week 3		
Week 4	A) By adding a collision term to the equation	
	B) Using relaxation time approachC) Using BGK approximation	
Week 5	D) None of the above	
Week 6	No, the answer is incorrect.	
Week 7	Score: 0	
VVCCR 1	Accepted Answers:	
Non-equilibrium	A) By adding a collision term to the equation	
energy	B) Using relaxation time approach	
transport at Nanoscales:	C) Using BGK approximation	
Boltzmann	2) The coattains intervals are used to	4
Transport	2) The scattering integrals are used to	1 point
Equation (BTE)	A) represent the net change in the scattering of the two particle collision	
Boltzmann	B) calculate the collision term	
Transport	C) convert the multi-body problem into computationally possible single particle problem	
Equation under		
the relaxation time	D) solve both equilibrium and transport phenomena	
approximation	No, the answer is incorrect.	
Domination of	Score: 0	
 Derivation of Continuum laws 	Accepted Answers:	
from Boltzmann	A) represent the net change in the scattering of the two particle collision	
Transport	B) calculate the collision term	
Equation Part 1	C) convert the multi-body problem into computationally possible single particle problem	
O Derivation of	Consider the correct statements about Relaxation time approximation	1 point
Continuum laws from Boltzmann		
Transport	A) Relates transport distribution function to equilibrium distribution function	
Equation Part 2	■ B) Simplifies collision term into distribution function and relaxation time	
Quiz : Week 7	C) It is also called as Bhatnagar-Gross-Krook approximation	
Assignment 1	D) All the above	
Feedback for week 7	No, the answer is incorrect. Score: 0	
Week 8	Accepted Answers: D) All the above	
	DI AII UE BUOVE	

Micro and nano scale energy transport Unit 8	3 - W	8	Unit	(port	trans	eneray	scale	nano	and	Micro
--	-------	---	------	---	------	-------	--------	-------	------	-----	-------

9/2017	Micro and mano scale energy transport Office - Week 7	
Week 9	4) Consider the following statements about BGK approximation. Identify the false statements.	1 point
Week 10	A) Particle interaction is explained	
	 B) Change in the wave vector of the particles due to collisions, are considered C) represents complex collision term into simplified expression 	
Week 11	D) All the above	
Week 12	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	A) Particle interaction is explained B) Change in the wave vector of the particles due to collisions, are considered	
		d maint
		1 point
	 A) the time scale required to bring transport distribution function to equilibrium distribution 	n
	B) The collisions between the particles	
	C) The scattering of the particles to get back to equilibrium	
	D) None of these	
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	A) the time scale required to bring transport distribution function to equilibrium distribution func	tion
	B) The collisions between the particles (c) The control of the particles to get book to equilibrium	
	C) The scattering of the particles to get back to equilibrium	
		1 point
	A) Knudsen number will appear in the equation	
	B) For continuum, the collision term will be significantC) Advection will be insignificant while approacing the continuum limit	
	D) Ballistic transport phenomena can be seen when collision term is important	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	A) Knudsen number will appear in the equation B) For continuum, the collision term will be significant	
	C) Advection will be insignificant while approacing the continuum limit	
	7) Choose the correct statements	1 point
	A) BTE is self sufficient equation which carries information depending up on the working	regime
	B) A linear temperature profile will be observed between the walls of hot and cold sides	when
	collision term approaches free molecular limit C) A high Knudsen number results in ballistic transport of the carriers	
	D) All the above	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	2
	A) BTE is self sufficient equation which carries information depending up on the working regimeC) A high Knudsen number results in ballistic transport of the carriers	7
	8) Identify the correct pairs	1 point
	A) Phonon-phonon scattering thermal resistance	
	B) Electron-phonon scattering electrical resistance	
	C) Phonon- boundary scattering free molecular limit	
	D) Phonon-impurity scattering high Knudsen number	
	No, the answer is incorrect. Score: 0	

Accepted Answers: A) Phonon-phonon scattering thermal resistance B) Electron-phonon scattering electrical resistance C) Phonon- boundary scattering free molecular limit 9) During Umklapp's scattering, the reciprocal vector is used to A) correct the wave vector to be within Brillioun zone B) make the resultant wave vector space physical C) conserve the energy during the collision D) conserve the momentum during the collision	1 point
No, the answer is incorrect. Score: 0	
Accepted Answers: A) correct the wave vector to be within Brillioun zone B) make the resultant wave vector space physical D) conserve the momentum during the collision	
10) The finite thermal conductivity of the bodies is the result of	1 point
 A) Umklapp scattering B) The resistance applied during post collision of the carriers C) Normal scattering D) all the above 	
No, the answer is incorrect.	
Score: 0 Accepted Answers: A) Umklapp scattering B) The resistance applied during post collision of the carriers	
11)Limitations of Boltzmann Transport Equation (BTE)	1 point
 A) Particle approach B) Applied to liquid molecules C) Applicable for dilute systems like phonons, electrons and gas molecules D) All the above 	
No, the answer is incorrect.	
Score: 0 Accepted Answers: A) Particle approach C) Applicable for dilute systems like phonons, electrons and gas molecules	
12) The constitutive equations for continuum transport processes can be derived from BTE	1 point
 A) Assuming the change in the distribution function from equilibrium distribution, is small B) Gradients of change in distribution function are significant C) Transient terms are negligible D) All the above 	
No, the answer is incorrect. Score: 0	
Accepted Answers: A) Assuming the change in the distribution function from equilibrium distribution, is small C) Transient terms are negligible	
13)While deriving Fourier's law of heat conduction through BTE	1 point
 A) Thermal conductivity is shown interms of heat capacity, phonon velocity and relaxation B) The wave vector space is converted into physical space interms of spherical coordination C) The net heat flux is given interms of energy distribution, phonon velocity and volume system D) None of these 	ates

No, the answer is incorrect.	
Score: 0	
Accepted Answers: A) Thermal conductivity is shown interms of heat capacity, phonon velocity and relaxation time B) The wave vector space is converted into physical space interms of spherical coordinates C) The net heat flux is given interms of energy distribution, phonon velocity and volume of the syst	tem
14)Choose the correct statements 1 po	oint
 A) Kinetic theory of gases and BTE predicts the same expression for thermal conductivity B) BTE gives the thermal conductivity dependency on frequency C) Kinetic theory of gases captures the size effects on thermal conductivity D) All the above 	
No, the answer is incorrect. Score: 0	
Accepted Answers: A) Kinetic theory of gases and BTE predicts the same expression for thermal conductivity B) BTE gives the thermal conductivity dependency on frequency	
15)Ohm's law can be derived from the BTE 1 po	oint
 A) Assuming a Lorentz force due to the electric field B) Considering the effect of Fermi energy level on the equilibrium distribution function C) Isothermal condition for metal/semiconductor, is used D) All the above 	
No, the answer is incorrect. Score: 0	
Accepted Answers: D) All the above	
16For the transport processes, the following are to be considered 1 po	int
 A) The number distribution of quantum states B) The energy associated with the energy states C) The position vector and momentum vector of these states D) All the above 	
No, the answer is incorrect. Score: 0 Accepted Answers: D) All the above	
17)Choose the correct statements 1 po	oint
 A) In Phase-space diagram, each point represents a quantum state B) A collection of scattered quantum states identified as an ensemble C) During, the transport process, the ensemble of quantum states will be advected with time D) None of the above 	
No, the answer is incorrect. Score: 0	
Accepted Answers: A) In Phase-space diagram, each point represents a quantum state B) A collection of scattered quantum states identified as an ensemble C) During, the transport process, the ensemble of quantum states will be advected with time	
18)The degrees of freedom for each particle during a transport process is given as 1 po	int
A) 1B) 3C) 6D) 2	

No, the answer is incorrect.

Score: 0

Accepted Answers:

C) 6

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

