Courses » Micro and nano scale energy transport	Announcements	Course	Forum	Progress	Mentor
		reviewer1@nptel.iitm.ac.in ▼			
Х					

Unit 6 - Week 5

Course outline	Week 5 Assignment 1	
How to access the portal	The due date for submitting this assignment has passed. Due on 2017-09-04,	23:59 IST.
?	Submitted assignment	
Week 1	1) The Fermi-Dirac distribution function will approximate Boltzmann distribution when	1 point
Week 2	$E-\mu >> K_{\rm B}T$	
Week 3	$E-\mu = K_BT = 0$	
Week 4	$E-\mu \ll K_BT$	
Week 5	$E-\mu = K_{\rm B}T$	
 Fundamentals of statistical thermodynamics part 1 	No, the answer is incorrect. Score: 0	
 Fundamentals of statistical thermodynamics part 2 	Accepted Answers: $E-\mu >> K_BT$	
 Fundamentals of statistical 	2) Which of the following is a correct statement	1 point
thermodynamics part 3	Maxwell- Boltzmann distribution is a classical distribution function	
Assignment 1	As the temperature increases, the number distribution function of the phonons approaches maximum value for larger value: For hv >> KBT, Bose-Einstein distribution function approximates Boltzmann distribution	s of frequency
Feedback for week 5	A distribution function gives the information of number of energy carriers which can occupy particular energy state	
Week 6	No, the answer is incorrect. Score: 0	
Week 7	Accepted Answers:	
Week 8	Maxwell- Boltzmann distribution is a classical distribution function For hv >> KBT , Bose-Einstein distribution function approximates Boltzmann distribution	
Week 9	A distribution function gives the information of number of energy carriers which can occupy particular energy state	
Week 10	3) The probability of occupancy of the particles is much higher in	1 point
Week 11	C Lower energy levels	
Week 12	 Higher energy levels Uniformly distributed among energy levels 	
	Equally in higher and lower energy levels	
	No, the answer is incorrect.	
	Accepted Answers:	
	Lower energy levels	
	4) Bose-Einstein distribution function is applicable for	1 point
	Molecules	
	Photons	
	Electrons	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Phonons Photons	
	5) The distribution functions for distinguishing particles without any limit of number of particles occupying an energy level are	1 point
	Bose-Einstein Maxwell-Boltzmann Fermi-Dirac	
	• All the above	
	Score: 0	
	Accepted Answers: Maxwell-Boltzmann	

12/29/2017

Micro and nano scale energy transport - - Unit 6 - Week 5

6) Statistical thermodynamics deals with

- Distribution of the particles in energy levels
- Calculation of macro scale properties using micro states information
- Ensembles of particles in quantum space
- None of the above

No, the answer is incorrect Score: 0 Accepted Answers: Distribution of the particles in energy levels Calculation of macro scale properties using micro states information Ensembles of particles in quantum space

7) Using Maxwell-Boltzmann approximation, identify the correct statements for ideal gas system (N- total number of molecules per unit volume K_B - Boltzmann constant R_u -Universal gas constant U- internal energy per unit volume Cv - heat capacity per unit volume)

- U = 1.5NK_B $U = 1.5 NR_u T$ $C_v = 1.5R_u$ $U = 1.5 N K_B T$ No, the answer is incorrect. Score: 0 Accepted Answers: $C_v = 1.5R_u$ $U = 1.5 N K_B T$

8) For a diatomic ideal gas system, identify the wrong statements

1 point Only translational kinetic energy contributes to internal energy at lower temperatures Both rotational and vibrational energies contributes to internal energy at lower temperatures Rotational kinetic energy also contributes to internal energy at higher temperatures Translational energy also contributes to internal energy at higher temperatures No, the answer is incorrect Score: 0 Accepted Answers: Both rotational and vibrational energies contributes to internal energy at lower temperatures 9) While deriving expression for internal energy of phonon gas the following assumptions are considered 1 point Bose-Einstein distribution is used Fermi-Dirac distribution is used Monoatomic crystalline structure with three acoustic phonons Debye approximation No, the answer is incorrect Score: 0 Accepted Answers: Bose-Einstein distribution is used Monoatomic crystalline structure with three acoustic phonons Debve approximation 1 point 10) Calculate the number of arrangements (probability Ω) of microstates when 4 carriers are distributed among 3 energy level in the order of 2 in lower energy

and 1 each in other energy levels 4 8 0 12 0 16 No, the answer is incorrect Score: 0 Accepted Answers: 12 11) 1 point The distribution (n_i in energy level 'i' with energy ε_i) which maximises Ω

given as following (where α and β are Langrange multipliers)

```
exp(\alpha+\beta\epsilon_i)
```

1 point

1 point

Micro and nano scale energy transport - - Unit 6 - Week 5

Micro and nano scale energy transport - - Unit 6 - Week 5

In association with

Funded by

Powered by 000L

Government of India Ministry of Human Resource Developm

