x					
				reviewer1@	⊇nptel.iitm.ac.in ▼
Courses » Micro and nano scale energy transport	Announcements	Course	Forum	Progress	Mentor

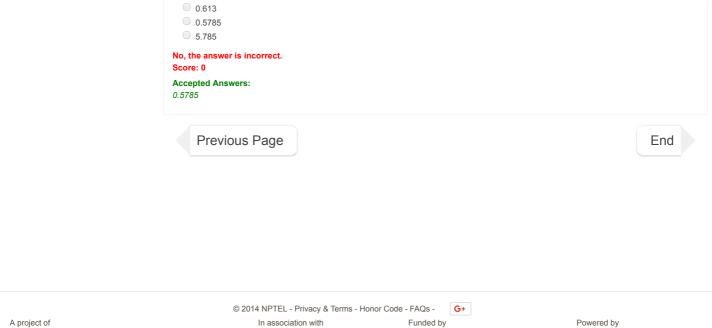
Unit 12 - Week 11

	Week 11 Assignment 1	
How to access the portal	The due date for submitting this assignment has passed. Due on 2017-10-16, 00):00 IST.
?	Submitted assignment	
Veek 1	Answer the following questions, More than one option can be correct.	
Veek 2	1) Microchannels are directly etched into silicon chips to dissipate a heat flux of from a computer chip. Each o	
Veek 3	parallel microchannels has a width a = 200 μ m, height b = 200 μ m, and length L = 10 mm. Refrigerant R-123 flow the microchannels. Calculate the heat transfer coefficient for if Nusselt number for fully developed flow is 3.556.	ws throug
Veek 4	Properties of R-123	
leek 5	$\mu_L = 404.2 * 10^{-6} Ns/m^2, \\ \mu_V = 10.8 * 10^{-6} Ns/m^2, \\ \rho_L = 1456.6 kg/m^3, \\ \rho_V = 6.5 Kg/m^3, \\ C_{p,L} = 1023 J/KgK, \\ K_L = 7000 KgK, \\ K_L = $	75.6 * 10
Veek 6	1426	
leek 7	 1344 1444 	
/eek 8	13444	
	No, the answer is incorrect. Score: 0	
Veek 9	Accepted Answers:	
leek 10	1344	
Veek 11	2) With the data from previous questions, Calculate the mass flux if the reynolds number is 100. (in Kg/S)	1 po
Two phase Heat transfer in Microchannels Part 2	0.202	
Nano fluid Heat transfer	 202 402 	
Part 1	302	
Nano fluid Heat transfer Part 2	No, the answer is incorrect. Score: 0	
Quiz : Week 11 Assignment 1	Accepted Answers:	
Feedback for Week 11		4
Veek 12	3) With the data from previous questions, calculate the single phase pressure drop in the microchannel (Pa)	1 pc
	 253 353 	
	0.353	
	453	
	No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	353	
	4) With the data in previous questions, calculate the total pressure drop if the boiling in microchannel starts at 8.29mm and the two phase pressure drop is 42,858 Pa/m	1 pc
	526	
	326	
	 426 0.426 	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers: 426	
	5) If the heat flux needed to be dissiplated is $13000 W/m^2$ for the microchannel system described in previous question. Calculate the	ne 1 po
	bond number.	
	$0.378 * 10^{-3}$	
	0.178 * 10 ⁻ 3	
	$0.478 * 10^{-3}$	

Micro and nano scale energy transport - - Unit 12 - Week 11

 $0.0378 * 10^{-3}$

No, the answer is incorrect. Score: 0 Accepted Answers:


 $0.378 * 10^{-3}$

<pre> 1289.28 416.965 416.965 416.965 416.965 416.965 416.96 416.96 70 The stability of nano fulds is determined by 7</pre>		
<pre> file 1985 if 198 if 1</pre>	3169.58	
<pre> 4 199 59 No, the answer is incorrect. Score: 0 Accepted Answers: 478 6.69 7) The stability of nano fluids is determined by</pre>	0 1269.28	
No, the answer is incorrect. Score: 0 Categoried Answers: 2468.85 7) The stability of nano fluids is determined by 1/2 0 Delta potential 2 Ata potential 2 Ata potential 2 Ata potential 2 Ata potential 3 Advantage of nano fluids over conventional sturies 1/2 10 Advantage of nano fluid particles are respectively 1/2 10 Accepted Answers: 2 Accepted Ans	416.985	
Score 0 Score 1 Score	4169.58	
Score 0 Score 1 Score	No, the answer is incorrect	
Accepted Answers: 4 r63 s3 7) The stability of nano fluids is determined by 9 Deter journal 4 Deter journal 4 Apple potential 4 Apple potential 5 Physical of nano fluids over conventional sturies 8) Advantage of nano fluids over conventional sturies 9 No erosion 1 No erosion 2 Section 2 Determined 9 No erosion 2 Section 2 Determined 9 Ore properties of base fluid and nano fluid particles are respectively 9 No epositive 9 Ore properties of base fluid and nano fluid particles are respectively 9 Deterpositive of base fluid and nano fluid particles are respectively 9 Deterpositive of base fluid and nano fluid particles are respectively 1 Determined 9 Deterpositive of base fluid and nano fluid particles are respectively 9 Deterpositive of base fluid and nano fluid particles are respectively 1 Determined 9 Deterpositive of base fluid and nano fluid particles are respectively 1 Determined 1 Det		
##88 B ?) The spoential for the spoential for the speedice of the spoential for the spoentis for the spoential for the spoential for the spoentia		
7) The stability of nano fluids is determined by 1 Delta potential 2 Acapacity of manufactorial 3 Advantage of nano fluids over conventional sturies 9. Accepted Answers: Icses fouling No. the answer is incorrect. Score: 0 9. Deproperlies of base fluid and nano fluid particles are respectively 9. Deproperlies of base fluid and nano fluid particles are respectively 9. Deproperlies of base fluid and nano fluid particles are respectively 9. Deproperlies of base fluid and nano fluid particles are negotifichear(C _D) = 110/KgK. Thermalconductivity(k) = 28000/Km, Viscos MWCNTanaoparticles : Density(p) = 2000kg/m ³ . Specifichear(C _D) = 110/KgK. Thermalconductivity(k) = 28000/Km acceleration of nano particle 9. Deproperlies of base fluid and nano fluid particles are fluid and nano fluid particles are provided. 9. Deproperlies of base fluid and nano fluid particles are fluid and (C _D) = 110/KgK. Thermalconductivity(k) = 28000/Km accelerations 9. Deproperlies of base fluid and nano fluid particles are fluid and (C _D) = 10		
Delta potential Zeta potential Appropriate Phy value of mixture No, the answer is incorrect. Score: 0 Accepted Answers: Zeta potential Image: Imag		10
<pre>2 Zela potential</pre>		ι p
Advantage of mixed mi		
Private of mixture No, the answer is incorrect. Zear plantial 0) Advantage of nano fluids over conventional sturies 0) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The properties of base fluid and nano fluid particles are respectively 1) The data 2) Base 3 2) The properties of nanotalist at 1% volume fraction nanofluid 1) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1) The data fluid fluid fluid fluid	•	
No, the answer is incorrect. Score: 0 Accepted Answers: Zela zotentia a) Advantage of nano fluids over conventional sturies b) Advantage of nano fluids over conventional sturies b) Advantage of nano fluids over conventional sturies c) Advantage of nano fluid over conventional sturies c) Accepted Answers: Less fouling No dreason No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 1150.43 1005.743 1001 the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1005.743 1001 the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1005.743 1001 the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 100 Accepted Answers: 1005.743 1001 the properties from question 9 calculate the thermal conductivity using the maxwells model. 100 100 100 100 100 100 100 10	Alpha potential	
Score 0 Accepted Answers: Zeta potentia! 8) Advantage of nano fluids over conventional slurries 9) Ne properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 1005.743 110.043 9 goo.75 120.05 Accepted Answers: 7005.743 1410.030 2005.743 <t< td=""><td>Ph value of mixture</td><td></td></t<>	Ph value of mixture	
Score: 0 Accepted Answers: Zeta potential Accepted Answers: Zeta potential Accepted Answers: Less fouling Accepted Answers: Costor: 0	No, the answer is incorrect.	
Accepted Answers: Zeta potential 8) Advantage of nano fluid over conventional sturies 9) Advantage of nano fluid over conventional sturies 9) Advantage of nano fluid over conventional sturies 9) No crossion 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties fluid one cluid at 1% volume fraction of nano particle 9) Oto Sr43 9) Othe the properties fluorenct. 9) Constand 9) Othe the properties fluorenct. 9) Constand 9)		
Zeta potential (a) Advantage of nano fluids over conventional sluries 1p (a) No rension (b) Second Constant (b) Second Constant (c) Second Constant (c) Second Constant (c) Second Constant (c) Second Constant (c) Second Constant (c) Constant (c)		
a) Avantage of nano fluids over conventional slurries • No erosion • Less fouling • No clogging • Sedimentation No, the answer is incorrect. Serse : Cacepted Answers: Less fouling No popties of base fluid and nano fluid particles are respectively • 100 F743 • 1150.43 • 2000 • 1150.43 • 2000 • 1150.43 • 1005.743 • 1150.43 • 2010.5 No, the answer is incorrect. Score: 0 Accepted Answers: • 2000 • 1150.43 • 2010.5 No, the answer is incorrect. Score: 0 Accepted Answers: • 2000 • 1190.43 • 2000 • 2001 • 2002 • 2003 * 2005 No, the answer is incorrect. Score: 0 Accepted Answers: • 2002 • 2003 * 2004 • 2005 No, the answer is incorrect. Score: 0 Accepted Answers: • 2005 * 2005 No, the answer is incorrect. Score: 0 Accepted Answers: • 2005 * 2005 No, the answer is incorrect. Score: 0 Accepted Answers: • 2005 * 2005 No, the answer is incorrect. Score: 0 • 2005 </td <td></td> <td></td>		
 No crossion Less fouling No clogging Sedimentation No, the answor is incorrect. Score: 0 Accepted Answers: Less fouling No clogging No clogging No crossion The properties of base fluid and nano fluid particles are respectively Tp Water : Density(p) = 995.7kg/m³, Specificheat(C_p) = 4.178 * 10³ J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 7100J/KgK, Thermalconductivity(k) = 2800W/Km viscos MWC/Tranop		
 Less fouling Sedimentation No, the answer is incorrect. Score: 0 Accepted Answers: Less fouling No dogging No a cogging <	8) Advantage of nano fluids over conventional slurries	1 p
 Less fouling Sedimentation No, the answer is incorrect. Score: 0 Accepted Answers: Less fouling No dogging No a cogging <	No erosion	
 No clogging Sedimentation No, the answer is incorrect. Score: 0 Accepted Answers: Lass fulling No clogging No erosion P) The properties of base fluid and nano fluid particles are respectively 1/p Metter: : Density(p) = 995.7kg/m³, Specificheat(C_p) = 4.178 * 10³ J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWCNT nanoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km Note answer is incorrect. Score: 0 Accepted Answers: 1005.743 1005.744 1005.744 1005.745 1005.745		
 Sedimentation No, the answer is incorrect. Score: 1 Accepted Answers: Less fouling No elogging No properties of base fluid and nano fluid particles are respectively 1p. Water : Density(p) = 995.7kg/m³, Specificheat(C_p) = 4.178 * 10³ J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWCNT nanoparticles : Density(p) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km backulate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 11240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1 p. 4 109.03 2 000 4 1183 1 10.003 No, the answer is incorrect. Score: 1 Accepted Answers: 1005.743 11 With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 p. 0.6336 0.6 10 		
No, the answer is incorrect. Score: 0 Accepted Answers: Less fouling No clogging No erosion 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 10 The properties of base fluid and nano fluid particles are respectively 10 The properties of base fluid and nano fluid particles are respectively 1005.743 1005.74		
Score: 0 Accepted Answers: Less fouling No clogging No clogging No erasion 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 1005.743 1150.43 90.75 1120.465 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1 p 1418 1418 1418 1418 1418 1418 1418 141	Sedimentation	
Accepted Answers: Less fouling No clogging No clogging No reasion 9) The properties of base fluid and nano fluid particles are respectively 1p $Water : Density(p) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWCNTnanoparticles : Density(p) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km cloud the density of the nanofluid at 1% volume fraction of nano particle 1005.74310$	No, the answer is incorrect.	
Less fouling No degging No erosion 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The answer is incorrect. 9) 90:75 9) 1240:65 No, the answer is incorrect. 9) Accepted Answers: 1005:743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1 p 9) 4109:03 9) 4109:03 9) 4109:03 No, the answer is incorrect. 9) Accepted Answers: 1005:743 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 p 9) 6:336 9 6:336 9 0:5 10	Score: 0	
No drogging No erosion 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 9) The properties of base fluid and nano fluid particles are respectively 10 J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWCNTnanoparticles : Density(p) = 2000kg/m ³ , Specificheat(C _p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1 p 100.4183 10 the answer is incorrect. Score: 0 Accepted Answers: 1005.743 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 p 0.6336 6 c3.36 0.5 10	Accepted Answers:	
No erosion 1p 9) The properties of base fluid and nano fluid particles are respectively 1p Water : Density(ρ) = 995.7kg/m ² , Specificheat(C _p) = 4.178 * 10 ³ J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWCNT nanoparticles : Density(ρ) = 2000kg/m ³ , Specificheat(C _p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.63 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1 p 4109.03 2000 4183 410.903 2000 4183 410.903 0.6336 63.36 0.5 10) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1p	Less fouling	
 9) The properties of base fluid and nano fluid particles are respectively 1p Water : Density(ρ) = 995.7kg/m³, Specificheat(C_p) = 4.178 * 10³ J/KgK, Thermalconductivity(k) = 0.615W/Km, Viscos MWCNTnanoparticles : Density(ρ) = 2000kg/m³, Specificheat(C_p) = 710J/KgK, Thermalconductivity(k) = 2800W/Km 2800W/Km 2alculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 150.43 990.75 1240.655 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 110.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1<i>p</i> 4109.03 000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 110.41 110 110 With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10 	No clogging	
 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 105.743 109.03 2000 4183 410.903 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1<i>p</i> 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, Thermalconducti	
 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 105.743 109.03 2000 4183 410.903 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1<i>p</i> 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti$ $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti$	vity(k) = 0.615W/Km, Viscos
 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconductions and the manufacture of the second structure of the second struct$	vity(k) = 0.615W/Km, Viscos
 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 100.With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743$	vity(k) = 0.615W/Km, Viscos
No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 41183 4109.03 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43$	vity(k) = 0.615W/Km, Viscos
Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 4109.03 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 6.3.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75$	vity(k) = 0.615W/Km, Viscos
Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 <i>p</i> 0.6336 63.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75$	vity(k) = 0.615W/Km, Viscos
1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect.$	vity(k) = 0.615W/Km, Viscos
10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 1 provide the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 provide the specific heat of 1% volume fraction nanofluid 0.6336 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0$	vity(k) = 0.615W/Km, Viscos
 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1<i>p</i> 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers:$	vity(k) = 0.615W/Km, Viscos
 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1<i>p</i> 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, $Thermalconducti$ $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, $Thermalconducti$ Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1<i>p</i> 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, $Thermalconducti$ $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, $Thermalconducti$ Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1<i>p</i> 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, The$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti 1005.7431005.743990.751240.65No, the answer is incorrect.Score: 0Accepted Answers:1005.74310) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid4109.032000$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
Score: 0 Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 p 0.6336 63.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti 1005.7431005.743990.751240.65No, the answer is incorrect.Score: 0Accepted Answers:1005.74310) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid4109.0320004183$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
Accepted Answers: 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 p 0.6336 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, Thermalconducti $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 4109.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : Density(ρ) = 995.7kg/m ³ , Specificheat(C_p) = 4.178 * 10 ³ J/KgK, Thermalconducti $MWCNTnanoparticles : Density(\rho) = 2000kg/m3, Specificheat(C_p) = 710J/KgK, ThermalconductiCalculate the density of the nanofluid at 1% volume fraction of nano particle1005.7431150.43990.751240.65No, the answer is incorrect.Score: 0Accepted Answers:1005.74310) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid4109.0320004183410.903No, the answer is incorrect.$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 1 p 0.6336 63.36 0.5 10	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : Density(ρ) = 995.7kg/m ³ , Specificheat(C_p) = 4.178 * 10 ³ J/KgK, Thermalconducti MWCNTnanoparticles : Density(ρ) = 2000kg/m ³ , Specificheat(C_p) = 710J/KgK, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 0.6336 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : Density(ρ) = 995.7kg/m ³ , Specificheat(C_p) = 4.178 * 10 ³ J/KgK, Thermalconducti $MWCNTnanoparticles : Density(\rho) = 2000kg/m3, Specificheat(C_p) = 710J/KgK, ThermalconductiCalculate the density of the nanofluid at 1% volume fraction of nano particle1005.7431150.43990.751240.65No, the answer is incorrect.Score: 0Accepted Answers:1005.74310) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid4109.0320004183410.903No, the answer is incorrect.Score: 0Accepted Answers:$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 63.36 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, $Thermalconducti$ $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, $Thermalconducti$ acculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 103.742 100.743 10] With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid Accepted Answers: 103.743 10] With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid Accepted Answers: 103.743 10] Mith the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid Accepted Answers: 103.743 10] Mith the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid Accepted Answers: 103.743 10] Mith the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 10] Mith the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 10] Mither fraction fr	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
 0.5 10 	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, Thermalconducti $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, Thermalconducti alculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 100.3 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model.	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
10	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, $Thermalconducti$ $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, $Thermalconducti$ alculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1005.743 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 10.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336	vity(k) = 0.615W/Km, Viscos
	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 * 10^3 J/KgK$, $Thermalconducti$ $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, $Thermalconducti$ alculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1005.743 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 10.03 11) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km 1 p
No the answer is incorrect	No erosion 9) The properties of base fluid and nano fluid particles are respectively Water : $Density(\rho) = 995.7kg/m^3$, $Specificheat(C_p) = 4.178 \times 10^3 J/KgK$, Thermalconducti $MWCNTnanoparticles : Density(\rho) = 2000kg/m^3$, $Specificheat(C_p) = 710J/KgK$, Thermalconducti Calculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 4183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 4109.03 1) With the data from Question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km
	No erosion 9) The properties of base fluid and nano fluid particles are respectively $Water : Density(\rho) = 995.7kg/m^3, Specificheat(C_p) = 4.178 * 10^3 J/KgK, Thermalconducti MWCNTnanoparticles : Density(\rho) = 2000kg/m^3, Specificheat(C_p) = 710J/KgK, Thermalconducti acculate the density of the nanofluid at 1% volume fraction of nano particle 1005.743 1150.43 990.75 1240.65 No, the answer is incorrect. Score: 0 Accepted Answers: 1005.743 10) With the properties from question 9 calculate the specific heat of 1% volume fraction nanofluid 4109.03 2000 41183 410.903 No, the answer is incorrect. Score: 0 Accepted Answers: 105.743 10) With the data from question 9, Calculate the thermal conductivity using the maxwells model. 0.6336 63.36 0.5$	vity(k) = 0.615W/Km, Viscos conductivity(k) = 2800W/Km 1 p

Accepted Answers: 0.6336

12) Calculate the effective thermal conductivity using the data provided in question 9 using hamiltonian crosser model considering 1 point $\operatorname{sphericity}(\psi)$ as 0.5.

0.05785

NASSCOM®

Funded by Government of India Ministry of Human Resource Developmer

https://onlinecourses.nptel.ac.in/noc17_me25/unit?unit=56&assessment=94