
Х

reviewer1@nptel.iitm.ac.in ▼

12/29/2017

Micro and nano	scale energy transport	Unit 11 - Week 10
----------------	------------------------	-------------------

/==/===		
Week 11	No, the answer is incorrect. Score: 0	
Week 12	Accepted Answers: $2 * 10^{-4}$	
	4) Using the details from the question no.3 Calculate the volume flow rate $(\mu m^3/s)$	1 point
	$3 * 10^4$	
	$1 * 10^4$	

 $2 * 10^4$ $4 * 10^4$ No, the answer is incorrect. Score: 0

Accepted Answers:

 $4 * 10^4$

5) Infinite length parallel plates are separated by 2h and aqueous solution is filled in the gap. **1** point Assume a electro0smotic mobility is $4 * 10^{-8}$ and $2 * 10^{-8} m^2/Vs$ for top and bottom plate respectively. If an electric field of 150V/cm is applied. Calculate the top plate velocity ($\mu m^2/s$)

 $6 * 10^{2}$ 7 * 10² 12 * 10² 8 * 10³

No, the answer is incorrect. Score: 0

Accepted Answers:

 $6 * 10^2$

6) Considering the data from problem 5, and assuming couette flow between the plate. **1** point Caluculate the mid plane velocity($\mu m^2/s$).

4.5 * 10^2 6 * 10^2 3 * 10^2 7 * 10^2 No, the answer is incorrect. Score: 0 Accepted Answers: 4.5 * 10^2

7) Consider a sodium ion motionless in water at time t=0. Calculate the electrophoretic force on **1** point the ion if an electric field of 100V/cm is applied. ($Z^{Na+} = 1, e = 1.6 * 10^{-19}C$)

 $1.6 * 10^{-15}$

Micro and nano scale energy transport - - Unit 11 - Week 10

 $3.2 * 10^{-16}$ $1.6 * 10^{-14}$ $1.6 * 10^{-16}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $1.6 * 10^{-15}$ ⁸⁾ With the data from the problem 7. Calculate the ion acceleration at t=0 (m^2/s) 1 point $4 * 10^9$ $4 * 10^{17}$ $4 * 10^{15}$ $4 * 10^{10}$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $4 * 10^{10}$ 9) Following forces are negligible in microchannel 1 point Viscous Surface tension Gravity Inertia No, the answer is incorrect. Score: 0 **Accepted Answers:** Gravity 10)Which one of the following number is not a hydrodynamic quantity 1 point Bond number Weber number Jakob number Ohnesorge number No, the answer is incorrect. Score: 0 **Accepted Answers:** Jakob number 11 Relative importance of buyoyancy force to surface tension force is given by 1 point Boiling number Bond number Capillary number Eotvos number No, the answer is incorrect. Score: 0 **Accepted Answers:** Bond number

Eo	tvos number	
12)	wo phase heat transfer is suitable for high heat transfer application due to	1 point
	 Latent heat > Specific heat None of the above Effective cooling for given volume of coolant High heat transfer coefficient 	
	o, the answer is incorrect. :ore: 0	
La Hig	c cepted Answers: tent heat > Specific heat gh heat transfer coefficient fective cooling for given volume of coolant	
13)/	Vhich of the following regimes are encountered in microchannel flow	1 point
	 Bubbly flow Spray flow Slug flow Wavy flow 	
	o, the answer is incorrect. core: 0	
Ac Sit	ccepted Answers: ug flow ubbly flow	
14)	Veber number considers the ratio of the following forces	1 point
	 Inertia and surface tension Viscous and surface tension Sensible heat and latent heat Buoyancy and surface tension 	
	o, the answer is incorrect. core: 0	
	ccepted Answers: ertia and surface tension	
15)	ype of boiling regime preferred for high heat transfer application	1 point
	 Film boiling Transition boiling Nucleate boiling Natural convection boiling 	
	o, the answer is incorrect. core: 0	
Ac	ccepted Answers: ucleate boiling	
	Previous Page	End

