

MPTEL

reviewer1@nptel.iitm.ac.in ▼

Courses » Micro and nano scale energy transport

Announcements Course Forum Progress Mentor

Unit 2 - Week 1

Course outline	Week 1 Assignment 1	
	The due date for submitting this assignment has passed. Due on 2017-08-07, 23:5	55 IST.
How to access the portal ?	Submitted assignment	
Week 1	Answer the following questions, More than one option can be correct.	
Overview to Micro/Nanoscale energy transport part 1	1) What is the length scale for nano-tubes and nano-wires? 100nm-1µm 1nm-100nm	1 point
 Overview to Micro/Nanoscale energy 	1μm-1mm1m-1km	
transport part 2	No, the answer is incorrect. Score: 0	
 Some applications of Micro/Nanoscale energy transport 	Accepted Answers: 1nm-100nm 2) Knudsen No. is ratio of	1 point
 Continuum heat transfer and its limitation 	Mean free path/Characteristic length scale. Wave Length/(Characteristic length scale).	
Quiz : Week 1 Assignment 1	Mean free path*Characteristic length scale.Mean free path/(Characteristic length scale) 2	
Feedback for week 1	No, the answer is incorrect. Score: 0	
Week 2	Accepted Answers: Mean free path/Characteristic length scale.	
Week 3	3) Very high Knudsen can be encountered at	1 point
Week 4	Outer Space	
Week 5	Very small Scale Devices Living room	
Week 6	Under sea	
Week 7	No, the answer is incorrect. Score: 0	
Week 8	Accepted Answers: Outer Space	
Week 9	Very small Scale Devices	
Week 10	4) All continuum assumptions are valid (ideally) if Knudsen No. approaches	1 point
Week 11	0 0 10	

Week 12

O 100	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
5) Till what no. can we use continuum theory with correction at walls for slip	1 point
.1.011050	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
.1	
6) Methods/Equations used in sub-continuum range is/are	1 point
Boltzmann Transport Equation Navier Stokes Equation Molecular Dynamics Equation of continuity	
No, the answer is incorrect. Score: 0	
Accepted Answers: Boltzmann Transport Equation Molecular Dynamics	
7) Can we encounter sub continuum regime in micro scale devices.	1 point
○ Yes ○ No	
No, the answer is incorrect. Score: 0	
Accepted Answers: Yes	
8) What is Moore's Law?	1 point
 Every second year transistor density keeps doubling. Every third year transistor density keeps doubling. Every second year transistor density remains unchanged. Don't know. 	
No, the answer is incorrect. Score: 0	
Accepted Answers: Every second year transistor density keeps doubling.	
9) Viscous Dissipation becomes in small length scales.	1 point
SignificantInsignificant	
No, the answer is incorrect. Score: 0	
Accepted Answers: Significant	
10)/ery small time scales(10-9-10-15 sec) can be encountered in	1 point

۵)	ZT=Power Factor	т
a)	Z1=	1

b)
$$ZT = \frac{Power\ Factor}{K*\sigma} T$$

c)
$$ZT = \frac{Power\ Factor}{K*\sigma} T^2$$

Don't know

No, the answer is incorrect.

Score: 0

 $S^{2*}\sigma$

Lasers

Accepted Answers:

a)
$$ZT = \frac{Power\ Factor}{K} T$$

14)Macroscopic laws break down when

1 point

- Length of the system is comparable to the mean free path of the carrier.
- Length of the system is very large than mean free path of the carrier.

Micro and nano scale energy transport Unit 2 - Week 1	
The time scale of the physical system is smaller than the relaxation time of the heat carrier.The time scale of the physical system is greater than the relaxation time of the heat carrier.	
No, the answer is incorrect. Score: 0	
Accepted Answers: Length of the system is comparable to the mean free path of the carrier. The time scale of the physical system is smaller than the relaxation time of the heat carrier.	
15BTE alone is sufficient to explain all the phenomenon at sub continuum regime if ratio of device dimension and thermal wavelength of carrier is comparable.	oint
TrueFalse	
No, the answer is incorrect. Score: 0	
Accepted Answers: False	
16)Which Equation has to be solved along with BTE when device dimensions become comparable to thermal wave length of particle?	oint
Schrodinger Wave Equation	
Continuity Equation	
Navier Stokes Equation	
Einstein's Energy mass balance.	
No, the answer is incorrect. Score: 0	

Accepted Answers:

Schrodinger Wave Equation

17) The constitutive law for radiation is

1 point

Fourier Law

Newton's Law of cooling

Stefan Boltzmann Law

Ohm's Law

No, the answer is incorrect.

Score: 0

Accepted Answers:

Stefan Boltzmann Law

Previous Page

End

Funded by

Government of India Ministry of Human Resource Development

Powered by

