Unit 4 - Week 2

How to access the portal?

Lecture 06 : Euler Equation for

Week 0 Assignment 0

Week 1

Week 2

Inviscid Flow

Equation

Lecture 07 : Bernoulli's

Lecture 08 : Examples of Bernoulli's Equation

Lecture 09 : Reynolds Transport Equation

Lecture 10 : Reynolds

Linear Momentum

Quiz : Assignment 2

Feedback Form For Week 2

Conservation

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Download Videos

Assignment Solution

Transport Theorem : Mass and

Course outline

 p_a ; throat diameter is D_t ; exit diameter is D and exit velocity is U. The throat is connected to a cylinder containing a frictionless piston of diameter D_s attached to a spring. The spring constant is k. The bottom surface of the piston is exposed to atmosphere. Due to the flow,

the piston moves by distance x. Assuming a steady constant density inviscid flow, x is

(A) $\frac{\rho U^2}{2k} \pi D_s^2$

(B) $\frac{\rho U^2}{8k} \left(\frac{D_t^2}{D^2} - 1 \right) \pi D_s^2$

(C) $\frac{\rho U^2}{2k} \left(\frac{D_t^2}{D^2} - 1 \right) \pi D_s^2$

(D) $\frac{\rho U^2}{8k} \left(\frac{D_t^4}{D^4} - 1 \right) \pi D_s^2$

No, the answer is incorrect.

Accepted Answers: