

NPTEL

reviewer3@nptel.iitm.ac.in ▼

Courses » Computational Fluid Dynamics

Announcements

Course Ask a Question

Progress

FAQ

Unit 9 - Week 8

Course

How to access the portal

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6 Week 7

Week 8

- Lecture 36 :
 Generalized
 analysis of
 Iteration method
- Lecture 37 :
 Further
 discussion on
 Iterative
 methods
- Lecture 38:
 Illustrative
 examples of
 Iterative
 methods
- Clecture 39 :
 Gradient
 Search based
 methods
- Lecture 40 : Steepest descent method (contd.)
- Quiz : Week 8 Assignment 8
- Feedback for Week 8

Week 8 Assignment 8

The due date for submitting this assignment has passed. Due on 2018-09-26, 23:59 IS As per our records you have not submitted this assignment.

σ+

1) **1 point**

Consider the linear equation Ax = b. Let us express A = L + D + U, where L is a lower triangular matrix, D is a diagonal matrix and U is an upper triangular matrix. All diagonal elements of L and U matrices are zero. Using Gauss-Seidel method, one can write

$$x^{i+1} = Mx^i + C$$

Choose the correct expressions for M and C

(a)
$$M = -D^{-1}(L+U)$$
, $C = D^{-1}b$

(b)
$$M = D^{-1}(L+U)$$
, $C = D^{-1}b$

(c)
$$M = -(D+L)^{-1}U$$
, $C = (D+L)^{-1}b$

(d)
$$M = (D+L)^{-1}U$$
, $C = (D+L)^{-1}b$

- Оа
- b
- 0 c
- d

No, the answer is incorrect.

Score: 0

Accepted Answers:

C

2) **1 point**

Scarborough criteria for sufficient condition of convergence in Gauss-Seidel method is

- (a) $\frac{\sum |a_{nb}|}{|a_p|} \le 1$; for all equations, where symbols have usual meaning
- (b) $\frac{\sum |a_{nb}|}{|a_p|} \le 1$; for all equations

< 1; at least for one equation, where symbols have usual meaning

- (c) $\frac{\sum |a_{nb}|}{|a_p|} \ge 1$; for all equations, where symbols have usual meaning
- (d) $\frac{\sum |a_{nb}|}{|a_p|} \ge 1$; for all equations

> 1; at least for one equation, where symbols have usual meaning

07/2020	Computational Fluid Dynamics Unit 9 - Week 8
Week 9	о b о с
Week 10	o c d
Week 11	No, the answer is incorrect. Score: 0
Week 12	Accepted Answers:
Download Videos	b 3)
Assignment Solution	Using iterative method, one can write $x^{i+1} = Mx^{i} + C$ Choose the correct statement
Live Session - Sep 13,2018	 (a) To achieve a high rate of convergence, spectral radius of convergence should be a small as possible (b) To achieve a high rate of convergence, spectral radius of convergence should be left. (c) Sufficient condition for convergence is max(M _R, M _C)>1, where the symbol
	have usual meaning (d) Sufficient condition for convergence is $\min(\ M\ _R, \ M\ _C) < 1$, where the symbols
	have usual meaning
	Оа
	○ b
	<u></u> с
	O d
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	4) 1 point
	Consider the following two set or equations
	Set-1
	$x_1 + x_2 + x_3 = 3$
	$2x_1 + 3x_2 + 4x_3 = 9$
	$x_1 + 7x_2 + x_3 = 9$
	Set 2
	$5x_1 - 2x_2 + 3x_3 = -1$
	$-3x_1 + 9x_2 + x_3 = 2$
	$2x_1 - x_2 - 7x_3 = 3$
	Choose the correct statement:
	(a) Gauss Seidel method can be applied to both set of equations
	(b) Gauss Seidel method can not be applied to both set of equations
	(c) Gauss Seidel method can be applied to Set 1, while it cannot be applied to set 2

Оа 0 b Ос \bigcirc d

No, the answer is incorrect.

Accepted	Answers
d	

For the solution of a system of linear algebraic equations, the convergence criterion for the residuals is set to 10⁻⁹. If the spectral radius of convergence is 0.9, the number of iterations using Gauss–Seidel iterative method should be greater than

- (a) 55
- (b) 112
- (c) 197
- (d) 154
 - o a
 - О с
 - \bigcirc d

Score: 0

Accepted Answers:

С

))

Consider the following set or equations

$$3x_1 + 7x_2 + 13x_3 = 76$$

$$x_1 + 5x_2 + 3x_3 = 28$$

$$12x_1 + 3x_2 - 5x_3 = 1$$

For getting solution, one has applied Gauss Seidel method. State which of these statements are correct.

- (a) It is not possible to apply Gauss Seidel method for getting solution
- (b) The solution will not converge since the coefficient matrix is not diagonally dominant
- (c) The solution will converge since the equations can be rewritten to make the coefficient matrix diagonally dominant
- (d) The solution will converge since coefficient matrix in the current form is diagonally dominant
- Оа
- b
- 0 c
- O d

No, the answer is incorrect.

Score: 0

Accepted Answers:

С

1 point

ompational mana 2 ymannos om con control	
7) Consider the following set or equations	1 point
$2x_1 + 3x_2 + 10x_3 = 10$	
$5x_1 - 2x_2 + 2x_3 = 5$	
$x_1 + 10x_2 + 5x_3 = 6$	
For getting solution, one has applied Gauss Seidel method. The number of iterations to get six decimal accuracy should be greater than	
(a) 35	f
(b) 62	
(c) 26	¥
(d) 53	
O a	
○ b	in
С	
O d	g
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
b	
8)	1 point
Consider the following statement regarding the characteristics of a matrix.	
(i) A matrix C is said to be symmetric if $C=C^T$. (C^T is the transpose of C)	
(ii) A matrix C is said to be positive definite if $C=C^T$.	
(iii) A matrix C is said to be symmetric if $\mathbf{v}^T C \mathbf{v} \ge 0$, where \mathbf{v} is any arbitrary vector.	
(iv) A matrix C is said to be positive definite if $\mathbf{v}^T C \mathbf{v} \ge 0$, where \mathbf{v} is any arbitrary vectors.	ctor.
Which of the above statements are correct?	
(a) (i) only	
(b) (ii) only (c) (i) and (iv)	
(d) (ii) and (iii)	
Оа	
b	
о с	
O d	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
С	
9)	1 point

An analyzer tries to apply the gradient search based methods for solving the systems Ax = b. Consider the following statements:

- (i) Gradient search method can be applied provided that A is symmetric only
- (ii) Gradient search method can be applied provided that A is positive definite only
- (iii) Gradient search method can be applied provided that A is positive definite and symmetric
- (iv) Gradient search method can be applied provided that all the eigen values of A are negative

Which of the above statements are correct?

- (a) (i) and (iv)
- (b) (ii) and (iv)
- (c) (iii)
- (d) (i), (ii) and (iv)

O d

Score: 0

Accepted Answers:

С

10) 10)

One has applied Steepest Descent method for solving Ax=b. The iteration equation is written as

$$x^{n} = x^{n-1} + \alpha_{n-1} r_{n-1}$$

where r_{n-1} is the residual at $(n-1)^{th}$ iteration and is given by $r_{n-1} = b - Ax^{n-1}$. Choose the correct expression for α_{n-1}

(a)
$$\alpha_{n-1} = \frac{r_{n-1}^T r_{n-1}}{r_{n-1}^T A r_{n-1}}$$

(b)
$$\alpha_{n-1} = \frac{r_{n-1}^T A r_{n-1}}{r_{n-1}^T r_{n-1}}$$

(c)
$$\alpha_{n-1} = \frac{r_{n-1}^T r_{n-1}}{A^T r_{n-1} A}$$

(d)
$$\alpha_{n-1} = \frac{A^T r_{n-1} A}{r_{n-1}^T r_{n-1}}$$

Оа

b

O C

 \bigcirc d

No, the answer is incorrect.

Score: 0

Accepted Answers:

а

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

Powered by

In association with

Funded by

Government of India Ministry of Human Resource Development

