

Week 0

Week 1

Week 2

Week 3

Week 4

Lecture 07 - Forward

Lecture 08 - Inverse

Lecture 08.1 - Problems in

Week 4 - Lecture Notes

Quiz : Assignment 4

Feedback for Week 4

Assignment 4 Solution

Kinematics

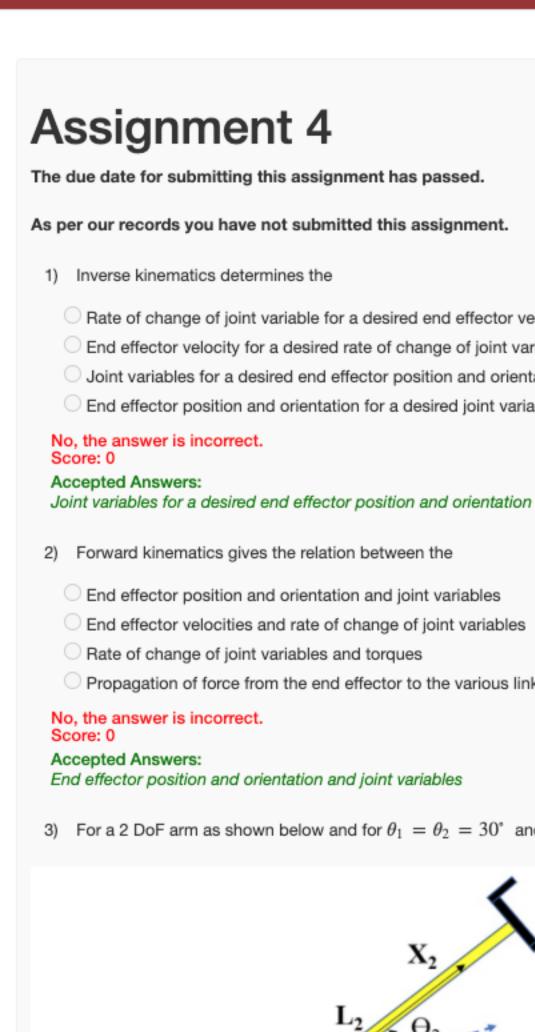
Kinematics

Kinematics

Week 5

Week 6

Week 7


Week 8

Week 9

Week 11

Week 12

DOWNLOAD VIDEOS

About the Course Announcements

Ask a Question

Progress

Mentor

1 point

1 point

1 point

1 point

1 point

1 point

The due date for submitting this assignment has passed. Due on 2021-02-17, 23:59 IST. As per our records you have not submitted this assignment. 1) Inverse kinematics determines the 1 point Rate of change of joint variable for a desired end effector velocity End effector velocity for a desired rate of change of joint variable O Joint variables for a desired end effector position and orientation End effector position and orientation for a desired joint variable No, the answer is incorrect.

2) Forward kinematics gives the relation between the End effector position and orientation and joint variables End effector velocities and rate of change of joint variables Rate of change of joint variables and torques Propagation of force from the end effector to the various links of the robot No, the answer is incorrect.

End effector position and orientation and joint variables 3) For a 2 DoF arm as shown below and for $\theta_1=\theta_2=30^\circ$ and link length $l_1=l_2=1$ unit, the end effector position is

 L_1

 $^{*}Z_{0,1}$ (0.366, 0.366) (1.366, 1.366) (0.366, 1.366) (1.366,0.366) No, the answer is incorrect. Score: 0 Accepted Answers:

0 - 1

> d Θ a 0 - 10 0 0 Θ_1 1-2 0 L_1 Θ_2 2-3 L_2 0 Θ_3 Θ d 0 - 10 1-2 0 0 L_1 Θ_2 2 - 30 0 L_2 Θ_3 No, the answer is incorrect. Score: 0 Accepted Answers:

 $cos(\theta_1), -sin(\theta_1), 0$ $cos(\theta_1), -sin(\theta_1), 0, 0$

0 $L_1cos(\theta_1) - L_2cos(\theta_1 + \theta_2) - L_3cos(\theta_1 + \theta_2 + \theta_3)$ $L_1sin(\theta_1) + L_2sin(\theta_1 + \theta_2) + L_3sin(\theta_1 + \theta_2 + \theta_3)$ $L_1cos(\theta_1) - L_2cos(\theta_1 + \theta_2) - L_3cos(\theta_1 + \theta_2 + \theta_3)$ $L_1sin(\theta_1) + L_2sin(\theta_1 + \theta_2) + L_3sin(\theta_1 + \theta_2 + \theta_3)$

θ d 0 - 1 Θ_1 1-2 L_1 Θ_2 2 - 30 L_2 L_4 Θ_4 d θ 0 0 - 10 Θ_1 1-2 L_1 0 0 Θ_2 2 - 30 D_3 L_2 0 L_4 0 0 3-4 Θ_4 d Θ 0-10 Θ_1 1-2 L_1 0 Θ_2 2 - 30 L_2 D_3 0 3-40 0 L_4 Θ_4 d Θ 0 - 10 Θ_1

1-2

2 - 3

3-4

Accepted Answers:

Score: 0

 L_1

 L_2

0

WAIST JOINT 1

180

 O_0,O_1,O_2 Y₂ O_4,O_5,O_6

Score: 0 Accepted Answers: $0, 0, 0, \theta_1; 0, -90, 0, \theta_2$ 9) For a the 2 DOF RP manipulator shown below, the relation between the end effector position (x,y) and joint variables are

 $\mathbf{d_2}$

 Θ_1

 $x = d_2 cosec(\theta_1), y = d_2 sin(\theta_1)$

 $x = d_2 cos(\theta_1), y = 0.5 d_2 sin(\theta_1)$

 $cos(\theta_2) = \frac{x^2 + y^2 + l_1^2 + l_2^2}{2l_1 l_2}$

 $sin(\theta_2) = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}$

 $cos(\theta_2) = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}$

Accepted Answers: $cos(\theta_2) = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}$

Score: 0

No, the answer is incorrect.

 $0,0,0,\theta_1;0,180,0,\theta_2$

 $0, 0, 0, \theta_1; L_2, -90, 0, \theta_2$

 $0,0,0,\theta_1;0,0,0,\theta_2$

 $0,0,0,\theta_1;0,-90,0,\theta_2$

No, the answer is incorrect.

 $x = 0.5d_2 cos(\theta_1), y = 0.5d_2 sin(\theta_1)$ $x = d_2 cos(\theta_1), y = d_2 sin(\theta_1)$ No, the answer is incorrect. Score: 0 Accepted Answers: $x = d_2 cos(\theta_1), y = d_2 sin(\theta_1)$ 10) For the 2 DOF arm shown below, the solution for angle θ_2 1 point

 \mathbf{Z}_2

(1.366, 1.366) 4) For a 3 DoF arm shown below, the DH table is given by Θ_3 $^{\star}Z_3$

 \mathbf{Z}_2 θ d 0 1-20 L_1 Θ_2 0 2 - 3 L_2 Θ_3 0-10 0 1-2 L_1 0 0 Θ_2 2 - 30 L_2 Θ_3

5) For a 3 DOF arm shown in Q4, the first row of the homogeneous transformation matrix from link 0 to 1 is

 $cos(\theta_1), -sin(\theta_1), 0, L_1$ $cos(\theta_1)$, $sin(\theta_1)$, 0, 0 No, the answer is incorrect. Score: 0 Accepted Answers: $cos(\theta_1), -sin(\theta_1), 0, 0$ 6) For a 3 DOF arm shown in Q4, compute the homogeneous transformation between the base (frame zero) and the end effector (frame 3). The Opoints last column is given by $L_1cos(\theta_1) + L_2cos(\theta_1 + \theta_2) + L_3cos(\theta_1 + \theta_2 + \theta_3)$ $L_1sin(\theta_1) + L_2sin(\theta_1 + \theta_2) + L_3sin(\theta_1 + \theta_2 + \theta_3)$ 1 $L_1cos(\theta_1) + L_2cos(\theta_1 + \theta_2)$ $L_1sin(\theta_1) + L_2sin(\theta_1 + \theta_2)$

No, the answer is incorrect. Score: 0 Accepted Answers: $L_1cos(\theta_1) + L_2cos(\theta_1 + \theta_2) + L_3cos(\theta_1 + \theta_2 + \theta_3)$ $L_1sin(\theta_1) + L_2sin(\theta_1 + \theta_2) + L_3sin(\theta_1 + \theta_2 + \theta_3)$ 7) For a 4 DOFSCARA robot shown below, write down the DH table ➤ X₂ → X_{0,1} X_4

 Θ_2 D_3 0 Θ_4 L_4 No, the answer is incorrect.

SHOULDER

 Θ_4°

WRIST ROLL

8) For a 6 DOF PUMA robot shown below, the first row and second row of the DH table is **ELBOW** JOINT 3 Y3 WRIST BEND O SWIVEL Z_4, Z_6, Y_5

1 point