

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

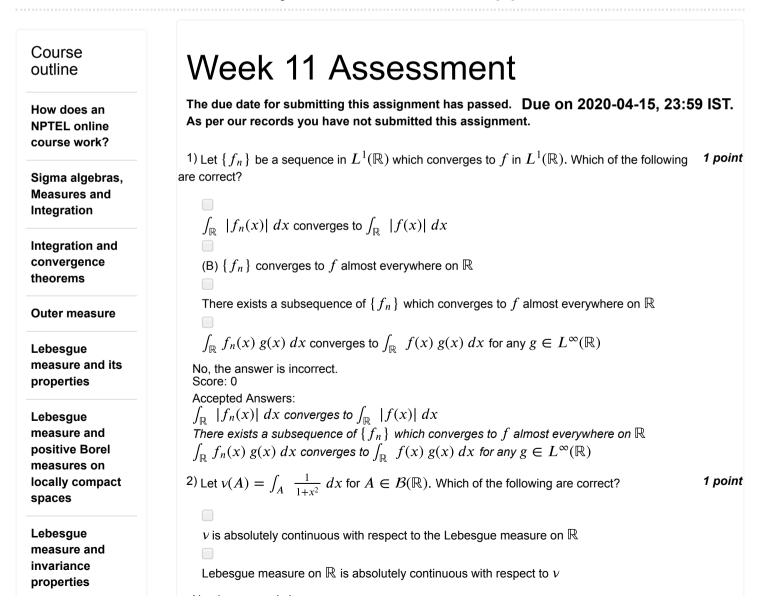
NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Unit 12 - Radon-Nikodym theorem and applications



L[^]p spaces and completeness

Product spaces and Fubini's theorem

Applications of Fubini's theorem and complex measures

Complex measures and Radon-Nikodym theorem

Radon-Nikodym theorem and applications

- Radon Nikodym theorem II (unit? unit=80&lesson=81)
- Consequences of Radon-Nikodym theorem I (unit? unit=80&lesson=82)
- Consequences of Radon-Nikodym theorem II (unit? unit=80&lesson=83)
- Continuous linear functionals on L^p spaces I (unit? unit=80&lesson=84)

Continuous linear functionals on L^p spaces II (unit? unit=80&lesson=85)

Quiz : Week 11 Assessment (assessment? name=107)

Riesz representation theorem and Lebesgue

Score: 0 Accepted Answers: v is absolutely continuous with respect to the Lebesgue measure on \mathbb{R} Lebesgue measure on \mathbb{R} is absolutely continuous with respect to v3) Which of the following are correct statements? 1 point $T(f) = \int_0^1 f(x) dx$ is a continuous linear functional on $L^1[0, 1]$ $T(f) = \int_0^1 f(x) dx$ is a continuous linear functional on $L^2(\mathbb{R})$ $T(f) = \int_0^1 f(x) dx$ is a continuous linear functional on $L^p[0, 1]$ for all $1 \le p \le \infty$ No, the answer is incorrect. Score: 0 Accepted Answers: $T(f) = \int_0^1 f(x) dx$ is a continuous linear functional on $L^1[0, 1]$ $T(f) = \int_0^1 \ f(x) dx$ is a continuous linear functional on $L^2(\mathbb{R})$ $T(f) = \int_0^1 f(x) dx$ is a continuous linear functional on $L^p[0, 1]$ for all $1 \le p \le \infty$ 4) Let T be an $n \times n$ invertible real matrix. Let μ be the measure defined by $\mu(A) = m(TA)$ **1** point where *m* is the Lebesgue measure on \mathbb{R}^n . Which of the following are correct?

 μ is absolutely continuous with respect to m

No. the answer is incorrect.

m is absolutely continuous with respect to μ

No, the answer is incorrect. Score: 0 Accepted Answers: μ is absolutely continuous with respect to mm is absolutely continuous with respect to μ

5) For $A \in \mathcal{B}(\mathbb{R}^2)$ define $A_{\mathbb{R}} = \{(x, 0) \in A : x \in \mathbb{R}\} = A \cap (\mathbb{R} \times \{0\})$. Define a **1** point measure v on $\mathcal{B}(\mathbb{R}^2)$ by $v(A) = \int_{A_{\mathbb{R}}} e^{-x^2} dx$. Which of the following statements are correct?

v is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2

 μ is mutually singular with respect to the Lebesgue measure on \mathbb{R}^2 No, the answer is incorrect. Score: 0 Accepted Answers:

 μ is mutually singular with respect to the Lebesgue measure on \mathbb{R}^2

6) Let μ be a non-zero complex measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which is absolutely continuous with **1** point respect to the Lebesgue measure *m* on \mathbb{R} . Let *h* denote the Radon-Nikodym derivative $\frac{d\mu}{dm}$. Which of the following are possible?

```
h is zero outside [0, 1]
```

h is zero on irrationals

differentiation theorem	h is one on the set $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $h \in \mathbb{N}$ but not extract the rules
	<i>h</i> is one on the set $\{\frac{1}{n} : n \in \mathbb{N}\}$ and zero otherwise
Weekly Feedback forms	No, the answer is incorrect. Score: 0
	Accepted Answers: <i>h is zero outside</i> [0, 1]
Video download	
	7) Let <i>m</i> be the Lebesgue measure on \mathbb{R} and μ be the measure defined by $\mu(A) = m(A) + 1$ 1 point if $0 \in A$, $\mu(A) = m(A)$ otherwise. Which of the following are correct?
	m is not absolutely continuous with respect to μ
	m is absolutely continuous with respect to μ
	μ is absolutely continuous with respect to m
	No, the answer is incorrect. Score: 0
	Accepted Answers: <i>m</i> is absolutely continuous with respect to μ
	8) Let δ_0 be the measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined by $\delta_0(A) = 1$ if $0 \in A$ and zero otherwise. 1 point Which of the following is correct?
	$m-\delta_0$ is absolutely continuous with respect to m
	$m-\delta_0$ is not absolutely continuous with respect to m
	No, the answer is incorrect. Score: 0
	Accepted Answers: $m - \delta_0$ is not absolutely continuous with respect to m
	⁹⁾ Let $f \in L^p[0,1]$ for some $1 . Define T(g) = \int_0^1 f(x)g(x)dx. Which of the 1 point$
	following are correct?
	T defines a continuous linear functional on $L^\infty[0,1]$
	T defines a continuous linear functional on $L^2[0,1]$
	T defines a continuous linear functional on $L^q[0,1]$ for all $q \geq p^*$ where $rac{1}{p}+rac{1}{p^*}=1$
	No, the answer is incorrect. Score: 0
	Accepted Answers: T defines a continuous linear functional on $L^{\infty}[0, 1]$
	T defines a continuous linear functional on $L^q[0,1]$ for all $q \geq p^*$ where $rac{1}{p} + rac{1}{p^*} = 1$
	10) Let $f_1, f_2 \in L^2(\mathbb{R})$ and let $T(g) = \int_{\mathbb{R}} f_1(x) f_2(x) g(x) dx$. Which of the following is 1 point
	correct?
	T defines a continuous linear functional on $L^2(\mathbb{R})$

T defines a continuous linear functional on $L^{\infty}(\mathbb{R})$ No, the answer is incorrect. Score: 0 Accepted Answers: *T* defines a continuous linear functional on $L^{\infty}(\mathbb{R})$