X
(https://swayam.gov.in/nc_details/NPTEL)
reviewer4@nptel.iitm.ac.in \vee
NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)
Progress (student/home) Mentor (student/mentor)

Unit 10 - Applications of Fubini's theorem and complex measures

Course outline

How does an
NPTEL online course work?

Sigma algebras,
Measures and Integration

Integration and convergence theorems

Outer measure

Lebesgue measure and its properties

Lebesgue measure and positive Borel measures on locally compact spaces

Lebesgue

measure and

Week 9 Assessment

The due date for submitting this assignment has passed. Due on 2020-04-01, 23:59 IST. As per our records you have not submitted this assignment.

1) Which of the following are complete measure spaces?
$\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right), m\right)$ where m is the Lebesgue measure on \mathbb{R}^{2}
$\left(\mathbb{R}^{2}, \mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R}), m\right)$ where m is the Lebesgue measure on \mathbb{R}^{2}
$\left(\mathbb{R}^{2}, \mathcal{L}\left(\mathbb{R}^{2}\right), m_{2}\right)$ where m_{2} is the Lebesgue measure on \mathbb{R}^{2}
No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left(\mathbb{R}^{2}, \mathcal{L}\left(\mathbb{R}^{2}\right), m_{2}\right)$ where m_{2} is the Lebesgue measure on \mathbb{R}^{2}
2) Suppose f is integrable on $[0, b]$, and $g(x)=\int_{x}^{b} \frac{f(t)}{t} d t$ for $0<x \leq b$. Then,

1 point
g is integrable on $[0, b]$ and $\int_{0}^{b} g(x) d x=\int_{0}^{b} f(t) d t$
No, the answer is incorrect.
Score: 0
Accepted Answers:
invariance properties
$L^{\wedge} p$ spaces and completeness

Product spaces and Fubini's theorem

Applications of Fubini's theorem and complex measures

Completeness of product measures (unit? unit=69\&lesson=70)

Polar coordinates
(unit?
unit=69\&lesson=71)
Applications of Fubini's theorem (unit? unit=69\&lesson=72)

Complex
measures I
(unit?
unit=69\&lesson=73)
Quiz : Week 9
Assessment
(assessment?
name=105)
Complex
measures and
Radon-Nikodym
theorem

Radon-Nikodym
theorem and applications

Riesz
representation
theorem and Lebesgue
differentiation theorem

Weekly Feedback forms

Video download
g is integrable on $[0, b]$ and $\int_{0}^{b} g(x) d x=\int_{0}^{b} f(t) d t$
3) Let f be the function defined on \mathbb{R}^{n} by $f(x)=|x|^{a}$ for $|x| \leq 1$ and zero otherwise. Which 1 point of the following are correct?

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a>-n \\
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a<-n \\
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a>0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\int_{\mathbb{R}^{n}} f(x) d x<\infty$ if $a>-n$
$\int_{\mathbb{R}^{n}} f(x) d x<\infty$ if $a>0$
4) Let f be the function defined on \mathbb{R}^{n} by $f(x)=|x|^{a}$ for $|x| \geq 1$ and zero otherwise. Which 1 point of the following are correct?

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a>-n \\
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a<-n \\
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a>0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\int_{\mathbb{R}^{n}} f(x) d x<\infty$ if $a<-n$
5) Let f be the function defined on \mathbb{R}^{n} by $f(x)=\left(1-|x|^{2}\right)^{a}$ for $|x| \leq 1$ and zero

1 point otherwise. Which of the following are always correct?

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a>-n \\
& \int_{\mathbb{R}^{n}} f(x) d x<\infty \text { if } a>0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\int_{\mathbb{R}^{n}} f(x) d x<\infty$ if $a>0$
6) Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and let $d_{f}(\lambda)=m\{x:|f(x)|>\lambda\} \quad \lambda>0$ where m is the

1 point Lebesgue measure on \mathbb{R}^{n}. Which of the following are correct?

$$
d_{f} \text { is non-increasing and is continuous from right }
$$

$$
\lambda d_{f}(\lambda) \rightarrow 0 \text { as } \lambda \rightarrow \infty
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
d_{f} is non-increasing and is continuous from right
$\lambda d_{f}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$
7) Let $g \in L^{1}(\mathbb{R})$ and let F be the function defined by $F(x)=\int_{x}^{x+1} g(y) d y$. Then which of the following are correct?

$$
\begin{aligned}
& F \in L^{1}(\mathbb{R}) \\
& F \text { is bounded } \\
& \lim _{|x| \rightarrow \infty} F(x)=0
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$F \in L^{1}(\mathbb{R})$
F is bounded
$\lim _{|x| \rightarrow \infty} F(x)=0$
8) Let $f \in L^{1}(\mathbb{R})$, define $F(x)=\sum_{k=-\infty}^{\infty} f(x+k) \quad x \in[0,1]$. Which of the following 1 point are correct?

$$
F \in L^{1}[0,1]
$$

If $F \in L^{1}[0,1]$ implies f is zero a.e.
$F(x)$ is finite almost everywhere
No, the answer is incorrect.
Score: 0
Accepted Answers:
$F \in L^{1}[0,1]$
$F(x)$ is finite almost everywhere
9) Let $\int_{\mathbb{R}}\left|f_{k}-f\right| d m \rightarrow 0$ as $k \rightarrow \infty$. Which of the following are correct?
$f_{k} \rightarrow f$ almost everywhere

A subsequence of f_{k} converges to f almost everywhere

For any $\varepsilon>0, m\left\{x:\left|f_{k}(x)-f(x)\right|>\varepsilon\right\} \rightarrow 0$ as $k \rightarrow \infty$
No, the answer is incorrect.
Score: 0
Accepted Answers:
A subsequence of f_{k} converges to f almost everywhere
For any $\varepsilon>0, m\left\{x:\left|f_{k}(x)-f(x)\right|>\varepsilon\right\} \rightarrow 0$ as $k \rightarrow \infty$
10Let f and g be in $L^{1}\left(\mathbb{R}^{n}\right)$ and additionally assume that g is bounded. Which of the following 1 point are correct?

$$
\begin{aligned}
& f * g \in L^{1}\left(\mathbb{R}^{n}\right) \\
& f * g \text { is bounded }
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

Accepted Answers:
$f * g \in L^{1}\left(\mathbb{R}^{n}\right)$
$f * g$ is bounded

