Х

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Unit 10 - Applications of Fubini's theorem and complex measures

Course outline	Week 9 Assessment
How does an NPTEL online course work?	The due date for submitting this assignment has passed. Due on 2020-04-01, 23:59 IST. As per our records you have not submitted this assignment.
Sigma algebras, Measures and Integration	1) Which of the following are complete measure spaces? ($\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), m$) where <i>m</i> is the Lebesgue measure on \mathbb{R}^2
Integration and convergence theorems	$(\mathbb{R}^2, \mathcal{L}(\mathbb{R}) \times \mathcal{L}(\mathbb{R}), m)$ where <i>m</i> is the Lebesgue measure on \mathbb{R}^2 $(\mathbb{R}^2, \mathcal{L}(\mathbb{R}^2), m_2)$ where m_2 is the Lebesgue measure on \mathbb{R}^2
Outer measure	No, the answer is incorrect.
Lebesgue measure and its properties	Accepted Answers: $(\mathbb{R}^2, \mathcal{L}(\mathbb{R}^2), m_2)$ where m_2 is the Lebesgue measure on \mathbb{R}^2 ²⁾ Suppose f is integrable on $[0, b]$, and $g(x) = \int_x^b \frac{f(t)}{t} dt$ for $0 < x \le b$. Then, 1 point
Lebesgue measure and positive Borel measures on locally compact spaces	<i>g</i> is not integrable on $[0, b]$ <i>g</i> is integrable on $[0, b]$ and $\int_0^b g(x) dx = \int_0^b f(t) dt$ No, the answer is incorrect.
Lebesgue measure and	Score: 0 Accepted Answers:

invariance properties

L[^]p spaces and completeness

Product spaces and Fubini's theorem

Applications of Fubini's theorem and complex measures

- Completeness of product measures (unit? unit=69&lesson=70)
- Polar
 coordinates
 (unit?
 unit=69&lesson=71)
- Applications of Fubini's theorem (unit? unit=69&lesson=72)
- Complex measures I (unit? unit=69&lesson=73)
- Quiz : Week 9 Assessment (assessment? name=105)

Complex measures and Radon-Nikodym theorem

Radon-Nikodym theorem and applications

Riesz representation theorem and Lebesgue differentiation theorem

Weekly Feedback forms

Video download

g is integrable on
$$[0, b]$$
 and $\int_0^b g(x) \, dx = \int_0^b f(t) \, dt$

3) Let f be the function defined on \mathbb{R}^n by $f(x) = |x|^a$ for $|x| \le 1$ and zero otherwise. Which **1** point of the following are correct?

 $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > -n$ $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a < -n$ $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > 0$ No, the answer is incorrect. Score: 0
Accepted Answers:

 $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > -n$ $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > 0$

4) Let f be the function defined on \mathbb{R}^n by $f(x) = |x|^a$ for $|x| \ge 1$ and zero otherwise. Which **1 point** of the following are correct?

 $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > -n$ $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a < -n$ $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > 0$

No, the answer is incorrect. Score: 0 Accepted Answers: $\int_{\mathbb{R}^n} f(x) dx < \infty$ if a < -n

5) Let f be the function defined on \mathbb{R}^n by $f(x) = (1 - |x|^2)^a$ for $|x| \le 1$ and zero **1** point otherwise. Which of the following are always correct?

 $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > -n$ $\int_{\mathbb{R}^n} f(x) \, dx < \infty \text{ if } a > 0$

No, the answer is incorrect. Score: 0 Accepted Answers: $\int_{\mathbb{D}^n} f(x) dx < \infty$ if a > 0

6) Let $f \in L^1(\mathbb{R}^n)$ and let $d_f(\lambda) = m\{x : |f(x)| > \lambda\}$ $\lambda > 0$ where *m* is the **1** point Lebesgue measure on \mathbb{R}^n . Which of the following are correct?

 d_f is non-increasing and is continuous from right

 $\lambda d_f(\lambda) \to 0$ as $\lambda \to \infty$

No, the answer is incorrect. Score: 0 Accepted Answers: d_f is non-increasing and is continuous from right $\lambda d_f(\lambda) \to 0$ as $\lambda \to \infty$

⁷⁾ Let $g \in L^1(\mathbb{R})$ and let F be the function defined by $F(x) = \int_x^{x+1} g(y) \, dy$. Then which **1** point of the following are correct?

 $F \in L^{1}(\mathbb{R})$ F is bounded $\lim_{|x|\to\infty} F(x) = 0$ No, the answer is incorrect.

Score: 0 Accepted Answers: $F \in L^1(\mathbb{R})$ *F is bounded* $\lim_{|x|\to\infty} F(x) = 0$

8) Let $f \in L^1(\mathbb{R})$, define $F(x) = \sum_{k=-\infty}^{\infty} f(x+k)$ $x \in [0, 1]$. Which of the following **1 point** are correct?

 $F \in L^{1}[0, 1]$ If $F \in L^1[0, 1]$ implies f is zero a.e. F(x) is finite almost everywhere No, the answer is incorrect. Score: 0 Accepted Answers: $F \in L^{1}[0, 1]$ F(x) is finite almost everywhere 9) Let $\int_{\mathbb{R}} |f_k - f| dm \to 0$ as $k \to \infty$. Which of the following are correct? 1 point $f_k \rightarrow f$ almost everywhere A subsequence of f_k converges to f almost everywhere For any $\varepsilon > 0$, $m\{x : |f_k(x) - f(x)| > \varepsilon\} \to 0$ as $k \to \infty$ No, the answer is incorrect. Score: 0 Accepted Answers: A subsequence of f_k converges to f almost everywhere For any $\varepsilon > 0$, $m\{x : |f_k(x) - f(x)| > \varepsilon\} \to 0$ as $k \to \infty$

10Let f and g be in $L^1(\mathbb{R}^n)$ and additionally assume that g is bounded. Which of the following **1** point are correct?

 $f * g \in L^1(\mathbb{R}^n)$ f * g is bounded

No, the answer is incorrect. Score: 0

Accepted Answers: $f * g \in L^1(\mathbb{R}^n)$ f * g is bounded