Х

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Measure Theory (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_ma02/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Unit 7 - Lebesgue measure and invariance properties

Course outline	Week 6 Assessment	
How does an NPTEL online course work?	The due date for submitting this assignment has passed. Due on 2020-03-11, 23:59 As per our records you have not submitted this assignment.	
Sigma algebras, Measures and Integration	 1) Which of the following sets are of Lebesgue measure zero? Any countable subset of ℝ Cantor set 	1 point
Integration and convergence theorems	The set of irrationals in the Cantor set k -dimensional subspace of \mathbb{R}^n , where $k < n$	
Outer measure	No, the answer is incorrect. Score: 0	
Lebesgue measure and its properties	Accepted Answers: Any countable subset of R Cantor set The set of irrationals in the Cantor set	
Lebesgue measure and positive Borel measures on locally compact spaces	If E is a Lebesgue set then $T(E)$ is a Lebesgue set	1 point
Lebesgue measure and invariance properties	If E is a Borel set then $T(E)$ is a Borel set No, the answer is incorrect. Score: 0 Accepted Answers:	

	If E is a Lebesgue set then $T(E)$ is a Lebesgue set
 Lebesgue 	
measure via	If E is a Borel set then $T(E)$ is a Borel set
Riesz	3) Which of the following are true? 1 point
representation	
theorem (unit?	
unit=48&lesson=49)	The outer measure m_* on $\mathbb R$ is translation invariant
Construction of	
Lebesgue	The Lebesgue measure m on $\mathbb R$ is translation invariant
measure (unit?	
unit=48&lesson=50)	If μ is any Borel measure on $\mathbb R$ and $\mu(K)<\infty$ for all compact set $K,$ then μ is a constant multiple
Invariance	of the Lebesgue measure
properties of	of the Lebesgue measure
Lebesgue	No, the answer is incorrect.
measure (unit?	Score: 0
unit=48&lesson=51)	Accepted Answers:
	The outer measure m_* on $\mathbb R$ is translation invariant
CLinear	The Lebesgue measure m on $\mathbb R$ is translation invariant
transformations	4) Let μ be a Borel measure on \mathbb{R} such that $\mu(A + n) = \mu(A)$ for all Borel sets A and 1 point
and Lebesgue	
measure (unit?	$n \in \mathbb{Z}$. Then which of the following are always correct?
unit=48&lesson=52)	
Cantor set (unit?	u in the zore measure
unit=48&lesson=53)	μ is the zero measure
Cantor function	μ is a constant multiple of the Lebesgue measure
(unit?	
unit=48&lesson=54)	Counting measure on \mathbb{R} satisfies the property $\mu(A + n) = \mu(A)$ for all A and $n \in \mathbb{Z}$.
O Quiz : Week 6	
Assessment	No, the answer is incorrect. Score: 0
(assessment?	
name=102)	Accepted Answers:
	Counting measure on $\mathbb R$ satisfies the property $\mu(A + n) = \mu(A)$ for all A and $n \in \mathbb Z$.
L^p spaces and	5) Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Which of the following are correct? 1 point
completeness	,
Product spaces	If A is singular, then $A(E)$ is a Lebesgue set for all $E\subset \mathbb{R}^n$
and Fubini's	
theorem	If A is invertible, then $A(F)$ is a Laborature set for all $F \subset \mathbb{D}^n$
	If A is invertible, then $A(E)$ is a Lebesgue set for all $E \subset \mathbb{R}^n$
Applications of	
Fubini's theorem	If A is invertible, then $A(E)$ is a Lebesgue set for all Lebesgue sets $E\subset \mathbb{R}^n$
and complex	No, the answer is incorrect.
measures	Score: 0
11603U163	Accepted Answers:
0	If A is singular, then $A(E)$ is a Lebesgue set for all $E \subset \mathbb{R}^n$
Complex	If A is invertible, then $A(E)$ is a Lebesgue set for all Lebesgue sets $E \subset \mathbb{R}^n$
measures and	
Radon-Nikodym	6) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a positive measurable function and let <i>m</i> denote the Lebesgue measure 1 point
theorem	on \mathbb{R} . Which of the following are true?
Radon-Nikodym	
theorem and	$\int_{E+x_0} f dm = \int_E f dm$ for all $E \in \mathcal{L}(R^n)$ and $x_0 \in \mathbb{R}^n$
applications	
Riesz	$\int_{\mathbb{R}^n} f(x+x_0) dx = \int_{\mathbb{R}^n} f dm$ for all $x_0 \in \mathbb{R}^n$
representation	
theorem and	$\int_{\mathbb{R}^n} f(Ax) dx = \int_{\mathbb{R}^n} f(x) dx$ for all linear maps $A : \mathbb{R}^n \to \mathbb{R}^n$
Lebesgue	

differentiation	No, the answer is incorrect. Score: 0	
theorem	Accepted Answers:	
Weekly Feedback	$\int_{\mathbb{R}^n} f(x+x_0) dx = \int_{\mathbb{R}^n} f dm \text{ for all } x_0 \in \mathbb{R}^n$	
forms	7) Which of the following are true?	1 poir
Video download		
	If $O \subset [0, 1]$ is a dense open set then $m(O) = 1$	
	If $O \subset [0, 1]$ is open then $m(O) > 0$	
	If $F \subset [0, 1]$ is closed and has no interior then $m(F) = 0$	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: $f(Q) \in [0, 1]$ is grant then $rr(Q) > 0$	
	If $O \subset [0, 1]$ is open then $m(O) > 0$	
	8) Which of the following sets are of Lebesgue measure zero?	1 poir
	$C imes \mathbb{R}\subset \mathbb{R}^2$ where $C\subset [0,1]$ is the Cantor set	
	$\mathbb{Q} \times \mathbb{R} \subset \mathbb{R}^2$	
	Countable union of lines passing through the origin in ${\mathbb R}^2$	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	$C \times \mathbb{R} \subset \mathbb{R}^2$ where $C \subset [0, 1]$ is the Cantor set $\mathbb{Q} \times \mathbb{R} \subset \mathbb{R}^2$	
	Countable union of lines passing through the origin in \mathbb{R}^2	
	9) Which of the following sets have positive Lebesgue measure?	1 poir
		1 poi
	$\sim 10^{-1}$	
	Any unbounded set in \mathbb{R}^2	
	Any unbounded closed set in \mathbb{R}^2	
	$(\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R} \subset \mathbb{R}^2$	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers: $(\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R} \subset \mathbb{R}^2$	
	10)Which of the following are correct?	1 poir
		i pon
	The Cantor set is a closed set	
	The Cantor set is a perfect set	
	The complement of Cantor set in $[0, 1]$ has positive Lebesgue measure	
	The Cantor set is uncountable	
	No, the answer is incorrect.	

The Cantor set is a closed set The Cantor set is a perfect set The complement of Cantor set in [0, 1] has positive Lebesgue measure The Cantor set is uncountable